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CHAPTER ONE

INTRODUCTION

The current report is concerned with the mathematical
modelling and simulation of vehicle handling and human driver
behavior. Early work in this area has been thoroughly
reviewed by Bohn [1.1]. of particular note is the develop-
ment of a mathematical model for open-loop dynamics by
McHenry and Deleys ([1.2], [1.3]). This model was made
operational on a hybrid computer at the Bendix Research
Laboratories (see Refs. [1.4] and [1.5] ), and it later evolved
into the National Highway Traffic Safety Administration Hybrid
Computer Vehicle Handling Program (HVHP). This model together
with recent improvments is set up at the Applied Physics
Laboratory of the John's Hopkins University,and is described in
detail in the Report of Bohn and Keenan [1.6] . An account
of the original HVHP model can be found in Jindra [1.7].

The present report involves further work along the above
lines. Under Contract No. DOT-HS-7-01715 an all-digital
simulation was developed for handling open-loop and closed-
loop maneuvers up to and including the limit regime. A goal
was extensive modularization, so that difficulties in possible
future program development would be minimized. The simulation
consists of two main parts, namely, a vehicle model called
IDSFC and a general purpose driver module called DRIVER.
Interfacing between the driver module and the vehicle model is
handled by 4 subroutines which can be readily altered to use

the driver module with different vehicle models.
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The vehicle model IDSFC involves the following degrees
of freedom:

Sprung Mass. Specification of the sprung mass requires 3

translational and 3 rotational degrees of freedom.

Front Unsprung Masses. The degrees of freedom allowed are

2 wheel hops, 2 wheel spins, 2 wheel rotations about the
kingpins, and 1 steering connecting rod displacement. To
reduce costs, the steering system is handled statically.

Rear Unsprung Masses.

A. Solid Rear Axle. The degrees of freedom allowed are

1 rear suspension deflection, 1 real axle roll, and 2 wheel
spins.

B. Independent Rear Suspensions. The degrees of freedom

allowed are 2 rear suspension deflections and 2 wheel spins.

The mathematical representation of the vehicle model
involves 30 first-order nonlinear differential equations and
approximately 250 algebraic equations. The digital program
contains 30 subroutines and both single precision and double
precision versions are available.

The vehicle simulation capabilities are basically as
follows:

(1) Straight-line braking/acceleration, cornering
without braking/acceleration and cornering with braking/
acceleration are allowed.

(2) Maneuvers up to and including the limit range
can be studied in that (i) Nonlinear terms in the kinematics
are retained (ii) These terms are activated by model level

switches and can be deleted for less severe maneuvers, thereby



“decreasing runhing costs. These switches can also be employed
if the user wishes to do studies on the effects of various
nonlinearities. The tire and suspension forces and moments are
modeled into the nonlinear range.

(3) For system and user flexibility, two methods are
provided for computing tire forces and moments, namely, (i) The
API~CALSPAN model which is based on curves fitted to the measured
data. (ii) A Partial Data Deck model which directly uses the
measured data.

(4) An antilock capacity, which can be activated by
a model level switch, is available.

(5) Both solid rear axle and independent rear suspen-
sions are allowed.

(6) Front wheel drive, rear wheel drive, and four wheel
drive are available.

(7) Separate braking at each wheel is permissible.

(8) An interactive capability is provided, which is
activated by a model level switch.

Control input to the vehicle model is through the general
purpose driver module DRIVER, the main features of which are
as follows:

(1) Driver controls steering, braking, and drive torque

inputs to the vehicle model.
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(2) There are 5 pre-programmed open-loop maneuvers
available, namely:
(a) Sinusoidal steer with trapezoidal braking.
(b) Trapezoidal steer with trapezoidal braking.
(¢c) Double trapezoidal steer with trapezoidal braking.
(d) Trapezoidal steering with a sinusoidal perturbation
with trapezoidal braking.
(e) Sinusoidal steering sweep with no braking.

In addition, the driver module will accept:

(i) Any open-loop maneuver supplied by the user
in tabular form.

(ii) Any open-loop maneuver specified by a user
supplied subroutine.

(3) The driver module can operate in a closed-loop mode
following a desired path. Four control strategies are
available, namely:

(a) A "crossover" model for a straight line
path.

(b) A '"crossover'" model for an arbitrary
path.

(c) A preview-predictor model which uses a
géometric predictor.

(d) A preview-predictor model which uses a
3 degree-of-freedom vehicle model as a predictor.

(4) The driver module permits a mixed-mode operation which
allows combined open and closed loop control.

(5) An obstacle avoidance strategy using the preview-

predictor models is available.



Volume 4 of the series is a USER'S GUIDE for the general
simulation, and Volum2 5 is a PROGRAMER'S GUIDE for the

vehicle simulation.
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CHAPTER TWO
MATHEMATICAL MODEL OF THE VEHICLE

§2.1. Introduction. This chapter presents the mathematical

model of the vehicle that is implemented in the digital pro-
gram: IDSFC (Improved Digital Simulation Fully Comprehen-
sive). The modeling is to a large degree the same as that
implemented on the Applied Physics Laboratory/Johns Hopkins
University Hybrid Computer and described in References (1.1),
(1.6) and (1.7).

Section 2.2. describes the physical representation of
the vehicle. Section 2.3 gives the mathematical equations
and the nomenclature used. Section 2.4 gives in detail the
differences between the current modeling and that of the

Applied Physics Laboratory.

§2.2. Physical Representation of the Vehicle

Seventeen degrees of freedom are involved in the vehi-
cle modeling. Fig. 2.1 shows the basic configuration em-
ployed for the case of a solid rear suspension. Fig. 2.2

gives more detail on the solid rear suspension.



“y

Space-fixed
axis system
]

Fig. 2.1. Vehicle Configuration for a Solid Rear Suspension.

The degrees of freedom used are:

Sprung Mass. Specification of the sprung mass requires 3

translational and 3 rotational degrees of freedom.

Front Unsprung Masses. The degrees of freedom allowed are

2 wheel hops, 2 wheel spins, 2 wheel rotations about the king-
pins and 1 steering connecting rod displacement. (To reduce
costs, the steering system is handled statically.)

Rear Unsprung Masses.

A. Solid Rear Axle. The degrees of freedom allowed are

1 rear suspension deflection, 1 real axle roll and 2 wheel
spins.

B. Independent Rear Suspensions. The degrees of freedom
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Fig. 2.2. Details of the Solid Rear Suspension.

allowed are 2 rear suspension defelections and 2 wheel spins.

Control commands are steering wheel displacement,
acceleration and braking.

Additional features of IDSFC are:

(1) Maneuvers up to and including the limit range can
be studied in that (i) Nonlinear terms in the kinematics are
retained. (1i) These terms are activated by model level
switches and can be deleted for less severc maneuvers, thero-
by decreasing running costs. These switches can also be
employed if the user wishes to do studies on the effects of

various nonlinearities. The tire and suspension forces and
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moments are modeled into the nonlinear range.

(3) For system and user flexibility, two methods are
provided for computing tire forces and moments, namely (i) The
API,-CALSPAN model which is based on curves fitted to the
measured data. (ii) A Partial Data Deck model which directly
uses the measured data.

(4) An antilock capacity, which can be activated by a
model level switch, is available.

(5) Front wheel drive, rear wheel drive and four wheel
drive are available.

(6) Separate braking at each wheel is permissible.

§2.3. Mathematical Equations

In the sequel, equation numbers involving and S or an I
refer to results valid for a solid rear suspension and an
independent rear suspension, respectively. The items treated
are as follows:

§2.3.1 : General Structure of the Equations.

§2.3.2 : Attitude and Position of the Vehicle.

§2.3.3 : Suspension Forces and Wheel Orientations.

§2.3.4 : Aerodynamic Forces and Moments.

§2.3. Resultant Forces and Moments.

(9]

§2.3.6 : Steering Equations.

§2.3.7 : Tire Rolling Radii.

§2.3.8 : Tire Slip Angles and Contact Patch Velocities.

§2.3.9 : Wheel Spins and Longitudinal Slips.
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§2.3.10 Tire Camber Angles.
§2.3.11 Tire Forces and Moments.
§2.3.12 Brake and Drive Torques.

§2.3.13

Center of Mass Accelerations.
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General Structure of the Equations

The equations of motion may be written in the form
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[MuF(6161+6262) + MuR(6363+6464)]p}

o5 { - [MuF(al+52) + MuRzR(63+G4)]p}(2.SI)
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F(5) = Yé(vr-wq—gsine) + ZNGS + ZNeu

2 2 . .
+ Oz[Ixz(r -p°) + (IZ—IX—Iy)pr + IXZ
2. .2
x (g+r9)] + 0245{[—MquF(61+52) - Mg

2 2
847 = Myr(%3+93)/2]

»

2 .2
(87+85)/2 - MuRzR(63+
X pr + [MuFa(61+62)/2 - MuRb(63+64)/2]

(a2+r?)1 + Ogg{[- M pTL(8,-8,) + M _pTo(8,-6,)]

by

pPg
X 7r} + 04{ —[MuF(61+62)/2 + MuR(63+64)]/2
X gsin6l}+ 045{[MuF(61+62)/2 + MuR(63+64)/2]

x (vr-wq) - MuF(6161+6262)q

- MuR(asds 6464)q} + 05{—[MquF

b

(81+52) + MuRzR(83+é4)]q} (2.61)

Yl(wp—ur+gcoses1n¢) + ZNws + Zqu

F(6) =
+ 0y (I,-Ig-v5)pa

- (1 +I§Z)qr] + OZS[MHFTF(GI—Gz)pr/4

Xz

+ MuRTR(63—64)pr/4]

+

g5 {[-M pa(8,+6,)/2 + M b(8,+8,)/2]ar)

05{MuFTF(61-62)q/2 + [MuFa(61+62)

+

+

MuRb(63+64)]p + MuRTR(63—64)q/2 (2.71)

F(9) = M p(ua-vp+gcosécose) + F_ o + Sg

* Fyg + Fgyg * Og{-M plbpr-Tpar/2

- Zp X (p%+q%)1/2} + OpystM g0 5 X (p%+q?)/2]
(2.1071)
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F(10) = MuR(uq—vp+gcosecos¢) + FZ4 + S4

+ F

Jga ¥

F

syr + Og{-M glbpr

- Tpar/2 - 2g (p2+q2)]/2}

+ 0245[MuR64(p2+q2)/2] (2.111)

The elements of the matrix M are as follows:
M(1,2) = M(1,3) = M(1,4) = M(1,7) = M(1,8) = M(1,9)

= M(1,10) = M(2,1) = M(2,3) = M(Z,5)

= M(2,7) = M(2,8) = M(2,9) = M(3,1) = M(3,2)

- M(3,4) = M(3,5) = M(3,6) = M(3,7) = M(3,8)

= M(3,9) = M(3,10) = M(4,1) = M(4,3)

- M(4,5) = M(4,7) = M(4,8) = M(4,9) = M(5,2)

= M(5,3) = M(5,4) = M(5,7) = M(5,8) = M(5,9)

= M(5,10) = M(6,3) = M(6,7) = M(6,8)

- M(6,9) = M(7,1) = M(7,2) = M(7,6) = M(7,8)

= M(7,9) = M(7,10) = M(8,1) = M(8,2)

= M(8,6) = M(8,7) = M(8,9) = M8,10)

= M(9,1) = M(9,2) = M(9,6) = M(9,7) = M(9,8)

= M(10,1) = M(10,7) = M(10,8) =0 (2.15)

M(1,1) = M(2,2) =1M (2.16)

M(5,1) = Y + 04[MuF(61+62)/2+MuR6R] + 0,(pgM p) (2.178)
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M(6,1) = O (oM _pop) (2.188)
M(4,2) = -y + O,[-M_(8,+6,)/2-M 6] (2.19)
M(2,6) = M(6,2) =y, (2.20)
M(2,10) = M(10,2) = O (~p M ) (2.218)
M(3,3) = M (2.22)
M(7,3) = M(8,3) = M(7,7) = M(8,8) = M__/2 (2.23)
M(9,3) = M(9,9) = M_p (2.245)
M(10,3) = M(9,4) = M(10,9) = O (-ppM_pop) (2.258)
M(2,4) = -M(1,5) = -y, + 045[—MuF(61+62)/2—MuR6R]
+ 0, (=0pM o) (2.268)
M(4,4) = I, + I + 0y MquF(51+az)+MuF(af+a§)/z
+2M pzpSp#M e8] + O) (ppM pzp)
+ 0 45(PgM _56z) (2.278)
M(6,4) = - T - I' + 0, [-M -a(6,+5,)/2+bM 6]
X 0, (pgM_pb) (2.28S)
M(7,4) = - M(8,4) = M_.T /4 (2.29)
M(10,4) = I + Ol(pRMuRzR+p§MuR) + 0,5 (PpM 262) (2.308)
M(5,5) = I. + I' + O0,-[M .z (8,+68,)+M (62+62)/2
y P Iy T OgsMpZp(0,+05)+M (3146,
+2M _z_ 8 +M 52] + 0,[2M _o_z_+M p2]
ur?R°RMuRr®R 1:°MuRPRZR MyRPR
+0,5(2M_co060) (2.318)
M(6,5) = O (ppM ooz +o2M 60)
+ 045[—MuFTF(61—52)/4]
+ 01 ,5(pgM 20c60) (2.325)



M(4,6) = —Ixz

M(5,6) = 0, [-M - To(8,-85)/4] + O;[pgM popzp+o

+

M(6,6) = IR +
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M(7,5) = M(8,5) = -M_pa/2
M(9,5) = bM o

M(10,5) = O (-pgM, obop)

M(1,6) = Oy (ppM oép)

- Iéz + 045[—MuFa(61+62)/2+MuRb6R]

I

0145(PgM r®RSR)

Z

M(10,6)

2

2

rMur®r

(2.

(2.

(2

]

(2.

2,2 2,2
+ MuF(a +TF/4) + MuRb + 016(MuRoR¢R)

M(6,10) = Ol(pR

MuRb)

M(4,10) = Ol(pRMuRzR) + 014(pRMuR6R)

M(10,10)

M(5,1) = Yé + 04

M(6,1)
M(2,10)
M(9,3)
M(10,3)
M(10,9)

M(2,4)

M(4,4)

M(9,10) =

0

016(-PgM R

IR + Ol(M

u

M(10,2) =0

M(9,9) = M o/2

dg)

2
r°R’

M p/2 M(9,4) = M Tp/4

0

“M(1,5) = -y} + O, [-M (8,+6,)/2

- M,p(85-8,)/2]

I

X

t I+ 0,5[M pZp(8,485) + Myp

2. .2
x (87+65)/2 + M

2. .2
x (83+65)/2]

urZr(%3*

64) + Mu

(Myp(8,485)/2 + Mp x (83%8,

R

(2.
(2.

(2.

(2.
(2.

)]
(2.

(2.
(2.
(2.

(2.

(2.

(2.

33)

.348)

358)

.36S)

388)
398)
408)
418)

428)

438)

171)
180)
211)
241)

251)

261)

271)
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M(6,4) =-I - I, + 045[—MuFa(61+62)/2
+ M pP(85+6,)/2]

M(10,4) = M _To/4

M(5,5) = I+ Ig+ O 5[M pZp(8,+6,)

(2.

(2.

281)
30I)

2.2 2..2
+ MuF(61+62)/2 + M p(8g+8,) + MuR(63+64)/2]

(2.311)

M(6,5) = 045[—MuFTF(6I-62)/4 - M pTp(85-6,)/4]
(2.321)
M(9,5) = M ob/2 (2.341)
M(10,5) = M pb/2 (2.35I)
M(1,6) = O (2.36I)

M(4,6) = - I, - I/ +0,.[-Ma X
(61+62)/2 + MuRb(63+64)/2] (2.371)
M(5,6) = M(6,5) (2.381)
M(6,6) = I + M _(a®+T2/4) + M__(b%+T2/4)  (2.39I)
’ z uF F "uR R Y

M(10,6) = M(6,10) = O (2.401)
M(4,10) = O (2.411)
M(9,10) = O (2.421)
M(10,10) = M_p/2 (2.431)

Note that in the above equations if the pitch angle 6

and the roll angle ¢ are assumed to be small, the program

uses the approximations sin® < 0, cosp I 1, sin¢g =

cos¢p <~ 1.

b,



§2.3.2. Attitude and Position of the Vehicle

aij’ i, j =1...3 are the elements of the transformation

matrix from the sprung mass coordinate system to the iner-

tial frame with the sequence {, 6, ¢. They are given by

aj;q = cos 6 cos Y (2.44)
819 = - cos ¢ siny + sin ¢ sin 6 cos ¢ (2.45)
a;g = sin ¢ sin ¢ + cos ¢ sin 6 cos ¢ (2.46)
a5, = COS 8 sin ¢ (2.47)
a5, = COS ¢ cos YP+sin ¢ sin 6 sin Y (2.48)
2y = — COS Y sin ¢ + cos ¢ sin 6 sin ¢ (2.49)
a5, = - sin 8 (2.50)
agy = COS 8 sin ¢ (2.51)
dpq = COS 6 cos ¢ (2.52)

Kinematic variables are

8 = (g cos ¢ = r sin ¢ ) (2.53)
§ = p + (asin ¢ + rcos ¢) tan O (2.54)
$ = (gqsin ¢ + rcos ¢) sec 0 (2.55)
X = (aqu + ajv + aggw) (2.56)
Y = (agu + BygV + 25qW) (2.57)
7 = (Bgu + ag,v + ag.w) (2.58)
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Note that if the pitch angle 6 and the roll angle ¢ are
assumed to be small, then the program makes the approximation
sing < 6,cos8 I 1, sing I ¢, cos¢ > 1, and eqs. (2.53) to

(2.58) are changed to:

¢ = (p + ro) (2.59)
6 = (q - r¢) (2.60)
v = (r + q¢) (2.61)
X =(ucCoS y - v SIN y) (2.62)
Y = (u SIN y + v COS ¢) (2.63)
Z = (-ub + vé + w) (2.64)



-24-

§2.3.3. Suspension Forces and Wheel Orientations

Front Wheels. The suspension forces Si are decomposed as

follows:
Si = - Fli - FZi - F3i + F4i + FAPi + FARi , 1=1...2.
(2.65)
the F1i are the Coulomb friction forces and are given by
i = ! i =
If Gi > (BPT)i , F1i CFi , i 1,2 (2.66)
5 - = ! i =
If éi < (BPT)i , Fli CFi , 1 1,2 (2.67)
Otherwise,
F1i = CFiGi/(BPT)i , i = 1,2 (2.68)
- . 2
(BPT); = 2 At{cFi (1/M+1/M p+a /Iy)
. (2.68a)
! =
+ CR(i+2)(1/MS+ab/Iy)} , 1 1,2

Note that egs. (2.66), (2.67) and (2.68) represents a
model in which the friction is taken to act like viscous
damping for small values of velocity. The in are the spring

forces and are given by:

Sgy = 8; + oy o 1= 1...2 (2.69)
For j such that Xi(j—l) < GSi < Xij , then
Fos = Fgpij * Osi ~ X13) Fspici+1)” Fopig?/ s+
%) - Kes 8., 1 = 1...2 (2.70)
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NOTE: If j = 5, then:

Fo; = Fgpij * (8gi ~ X35)(Fgpis = Fgpia)/(Xi57X14)
SRSk Ok W 10 f (2.71)
Kpi = (Fgpia ~ Fgpia)/(Xiq = Xj2) (2x72p
Fug; = Foy = Kpgy - 1 = 1...2 (2.73)

Note that egs. (2.69) through (2.73) model the spring forces
in a piecewise linear fashion with up to four segments. The

FSi are the shock absorber forces and are given by: For

j such that Xi(j—l) < Gi < Xij , then

Fai = Fsmij * 3% Fapygery ~ Fsmig)/ Kigz+1)*i5)  (2.79)

NOTE: If j = 5, then

ITEOR A iede )

3i sgis T (8

i = %35 Fguis = Feuia)/(Xys — Xi4) o (2.75)

i = 1,2
Note that egs. (2.74) and (2.75) model the shock absorber
forces in a piecewise linear fashion with up to four segments.
The F4i are the auxiliary roll stiffness forces and are given
by:
il i 2 s =
F4i = (-1) RF(G1 - 62)/TF g0 i= =T .2 (2.76)

The FAPi are the antipitch forces and are given by

= 2 S
Fapi = (Pyp * Pygdy + Pigbi)(Fpy = Fyypy) » 1 = 1,2
(2.77)
The FARi are the antiroll forces and are given by

2 L1
Fapg = (Byp * RypSy + Ryg8I(F - Fopn) , 1 =1,2 (2.78)
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The wheel orientations are

5 .
- : J
*sa1 ®sa01 +jioclj6$1 (2.79)
2 3
¢ = ¢ L C. .6
SA2 saoz j=o 2J 52 (2.80)
i ;
by = I G151 * A0ysenFgy - dgy (mcosvy) * KomMg
J (2.81)
5 .
- _ J - _
¢g = 3LoCa;052 * 80gSENFgy - Ogpp(l-cosdy) *+ KopoMyy
(2.82)
5 .
vy = g +j§0D1j6g1 -\ (2.83)
2 j
b, = b2 _jEOD 5835 + B, (2.84)
5 o J
8gy = I Ej 8g + A8 (2.85)
j=1
6. = 2 E..80 + a8 (2.86)
52 7 2o 23 g 2
Rear Wheels with a Solid Axle. The suspension forces are
decomposed into:
S; = -Fyy = Fgy — Fgy ¥ Fgy * Fpps * Fpps (2.87)
i=3...4
y = ' 3 = 2.8
If X4 > (BPT)i s F11 CRi , i 3, 4 ( 8)
y = -C! i ]
If x <-(BPT), , Fy; Chy » 14 3,4 (2.89)
where
S . o
X; = O - (-1)'Tgpép/z , i 3,4 (2.90)
Otherwise,
Fi, = C,x;/(BPT); , i = 3,4 (2.91)



-27-

2
= 1
(BPT)i 2At{CRi(1/MS + 1/MuR + b /Iy)
. 5
+ CF(i—Z)(l/MS + ab/Iy)} ] 3,4.
(2.91a)
The egs. for FZi remain unchanged except that Gi is replaced

by X4 where

N S | .
X4 6p = (-1)"Tgpép/2 , 1

The eqs. for F3i
X; as given by eq. (2.90) - And:
(-1)'R

F,. =

4i R¢R/TS

api 204 Fppg

Si are replaced by xi where

The eqs. for F

! =
X4

The wheel orientations are

remain unchanged except

= 3, 4

R * * =

i .
GR - (-1) TR¢R/2 , 1

o3 = 9¢p

0, = bg
Y3 = Kpgbp * KgpMz3 * Kipfss
Yy = Kpg¥p * KgpMpg * KppFsy

Rear Wheels with Independent Suspens

(2.92)

that Gi is replaced by

(2.93)

remain unchanged except that the

(2.94)

(2.95)
(2.96)

(2.97)
(2.98)

ions. The suspension forces

are decomposed into

S, = =Fy; =~ Fgy = Fgy * Fyy * Fppy

It §, > (BPI), F ., = Ch , i =
o : =

It 6, <-(BPT), , Fy, k™8 4

.4

(2.99)
(2.100)

(2.101)
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Otherwise,
Fi; = Cp6,/(BPT), , i = 3,4 (2.102)
(BPT)i is as in (2.91a)
FZi’ FBi remain unchanged.
_ i 2 s
Fj s (-)'RR(85 - 6,)/T2 , 1 = 3,4 (2.103)
FAPi’ FARi remain unchanged.
The wheel orientations are
> j
by = jEO C35 633 * KopaMys (2.104)
: j
bg T 350 Caj °sa * KoraMxe (2.105)
> j
Y3 = [ IpP35 %53 T FsrMzra * Krr'ss (2.106)
2 j
va T %o Py 854 * KgpMzra * XrRBse (2.107)

As a smoothing process the suspension forces are averaged

according to the following

First Averaging

S, (t)

Second Averaging

5, (t)

The weight compcnents
by:

F swr

scheme:

It

é(Si(t) + Si(t—At)) (2.108)

(2.109)

2(S5,(t) + 5,(t-4t))

&[Si(t) + 25 (t-At) + Si(t—ZAtﬂ

of the suspension forces are calculated

[(sT), - M g] cose (2.110)
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F ¥y [(sTy, - M pg]cose (2.111)
(ST), = %g[MuF ¢ Mgb /(a'+b )] (2.112)
(ST), = %g[MuR + Mga'/(a'+b')] (2.113)
a' = acosf + stine (2.114)
b' = bcosd - zgsine (2.115)

where in eqs. (2.110) throughout (2.115) 6 is the initial value of

8 for zero initial conditions.
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§2.3.4. Aerodynamic Forces and Moments

The velocity of the cross-wind is given by:

For k such that wd < X< wd

t1(k-1) tlk
Vyw = Whio(k-1) ¥ (X-Wdiy 1)) (Wdyo
- Wdiok-1)) /"1 "1 (k-1)) (2.116)
Other aerodynamic quantities are
u, =u - Vyw81nw (2.117)
Ve =V - Vywcosw (2.118)
W, =w (2.119)
_ 2 2 2
VCW = /rﬁr +Vr +wr (2.120)
a, = %paVCWZ (2.121)
-1, vV
T = sin" (g—),-3.14 < 1 < 3.14 (2.122)
Ccw
- _ . 23
p = (p—wchosw+wzws1ne) u_ (2.123)
= _ . . N
q = (q+wst1nw—wzws1n¢) u_ (2.124)
T = (r-w.) >~ (2.125)
zw’ u :
r
NOTE: 1If u, = 0,p,q, T =0 (2.126)
-1. ¥
o = tan (=) (2.127)



For k such that dC
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< o < dC A

x1(k-1) — x1k
ACy = dCyp(k-1) * (@=dC ;g _1y)(dC oy
—4C, 0 (k-1))/(dC, 15 =dC; 1 (k1))

For k such that C_j o 1< T< Copp
F(RAC) = € Crq g1y /CCr1x=Cri(r-1))
CL = Crak-1) * T(RACI(C 0p-Cin(k-1))
Cu = Cra(x-1) * T(RACI(Cig-Crg(k_1))
Cn = Cra(k-1) * T(RAC)I(C 4 -Cry(k-1))
Cx = Cis(k-1) * T(RACI(C 5, -Cog(k_1))
Cy = Crg(x-1) * T(RAOI(C g-Cig(k-1)’

Cz = Crrex-1) * T(RACI(Co gy -Com(k-1))
EFxs = (CX+ACX)anf
IFog = (CY+Cy §+cy ?)qasf
p r
ZFzs i (CZ+CZ OL+Cz a)qasf
a “q
dog =2 - 3
Cyt '%¥ Cypes 5252 -'Efglcx
Cy = ich ¥ E%QCY

(2.

(2.

(2

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

128)

129)

.130)

131)

132)

133)

134)

135)

136)

137)

138)

139)

140)

141)

142)
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(CL+Cz p+C£ r)anfz
P T

(Cﬁ+cm OH'Cm q)anfl
a q

Yl ey -y
\CN+Cnpp+Cnrr)anf2
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§2.3.5. Resultant Forces and Moments.

The resultant tire forces acting on the unsprung

masses are given by, for i=1l...4:

qui = -Fﬁia31 + FCi(allcosaci+azlcosBci) (2.146)
+ Fgy(-a;,cosB ;+a, cosa;)

Fyui = - Féia32 + FCi(alzcosaci+a2200sBci) (2.147)
* Fgy(-215C08B ;+a,,c080a;)

Foui = = Fri2zs + Fpy(213¢080, 4853088 5) (2.148)

+ Fg;(-ajgcosB ;+agqcosa,;)

Note: If the pitch and roll angles 6, ¢ are assumed small,

qui = FRie + FCicoswi - F8131nwi (2.149)
Fyui= -FRi¢ + F0151mpi + FSicoswi (2.1850)
qui = - FRi (2.151)

LF =

Xu xui (2.152)

(2.153)
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where
cos aywi = all(-s1nwi) + a12(005¢iCOSWj) (2.
+ als(sin¢icoswi)
cos Bywi = a21(—81nwi) + a22(cos¢icoswi)
(2.
+ a23(sin¢jcoswi)
COS Ygus = a31(—81nwi) + a32(cos¢icoswi)
(2.
+ a33(81n¢icoswi)
cosB wi
R v 2
2 2 .
cos Bywi + cos aywi
—cosoaVwi
cos R . =
et (2.

2 2
/éos Bywi + cos aywi

The resultant tire moments acting on the unsprung

masses are given by:

154)

155)

156)

187)

158)
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Ny, (55-8) 2? + (84-83) E%E

B Fyul[zF+RRlcosYh1—hFc+O4(61)]

- Fyuz[zF+RR2cosYh2—hFC+O4(62)]

- (Pua*Fo ) [2gt0,(8p)] + My + M, (2.1598)
ZNeu = ZFSWFa - 2FSWRb + (Sl+SZ)a - (SS+S4)b

+ qulsz+RRlcosYh1+O4(61)]

+

qu2[2F+RRZOOSYh2+O4(52)]

T

+ B
+ quS[ZR+ 5 ¢R+RRscosYh3+04( GR)]

T
R
* FrualZp~ 5 9g+RR cOSY) ,+0,(8p) ]

i
0y L(F, 3+ Fxua) Pyl + O7 L(RR,F  ,+RR,F, o

+RRSqu3+RR4qu4)sinB—IWF(m1+w2)

- IWR(w3+w4)] (2.1608)
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IN = a+RR cosahl) + Fyuz(a+RR

Yu Fyul( 1 )

cosQ

2 h2

3(b RRscosah3) - Fyu4(b—RR4cosa

Fou ha’
FXUZ(?? 2
TR T

R
qu4(7? - RR4coth4) - qu3(7?+RR3cosB

TF TF
- RR cothz) - F‘ l‘ 2+RR cothl)

h3)
MM, My + M_, + 0y fo ¢R(F

B} Ty T
“Nop = Zu,3( +RR3cosB ) - F

xu3 xu4):I (2.161)

zual3 - RRycosf, )

T T

R R
Vu.3( = +RR3cosYh3) - Fyu4( ¢ +RR4cosYh4)

Tsr
(85-84) 5~ + Mg + M, - 0 [(F

+

zu3+qu4)oR¢R

* (Foug + Fouadog ] (2.1628)

Note: 1If the pitch and roll angles 6 and ¢ are assumed to

be small,

PNow = (8g=8))Tp/2 + (84-83)Tgp/2 - (Fy; 3*+F 402
= Fou1(Zp+RRy~hpo) - Fouz(ZptRRy=hp )
- 04.[Fyulcs1+Fyu262+(Fyu3+Fyu4)(SR:|
+ M + M

Mo %2 (2.1638)
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)

N = (Sl+Sz)a - (S )b + 2(F

“Bu b)

SWF SWR

qul(zF+RRl) N qu2(2F+RR2) M quB(zR+RR3

* Tpoq/2 *+ FLua(Zp*RR,-Tpép/2) + O01l0p(F, 4

* Fruad] 0T 18 280t F 3R Faua )
* 07[(RRleul"-RRZquZ-"RRBqu3+RR4qu4)e
e IWF1&1+&2)-IWR(&3+&4)]
zthu b (F‘!u1+Fyu2)a - (FyuS"'Fyu4)b N (quz xul)TF/2
+ (qu4_qu3)TR/2 * le + Mz2 + Mz3 * Mz4
* OI[QR(qu3+qu4)¢R]
ZN¢R = (83—84)TSR/2 - Fyu3(RR3+TR¢R/2)
Foua(RRy-TRop/2)+F,  3(Tp/2-RRa6p)

Foua(TR/2+RR,0p) + M o + M_,

. 01{0?2[(FyuB-"Fyutl)*'(F +qu4)¢R]}

zu3

where

(2.164S)

(2.165)

(2.1668)
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cos o + coszs .
ywi
cos Ypy =
2
cos o + cos B_ .
ywi
-cosy cos o__ .
yw ywi
cos Op; = _
\jcos o + cos™ B__.
ywi
~COS Y cos B .
cos Bp; = VAL ywi
V@os o + cos”™ B__.
ywi
cos @, . T 2y, COS Op. + a,, cos BRi + 231 COS Ypj
cos Bhi = 2y COS Qps + a,, €OS BRi +t ag, COS Ypy
COS Y,; = @;g COS Gp; + a,q COS BRi + 255 COS Ypy
' T T
'F R
ZN = - — -— —
du (85-81)5 + (54-83)3

“Fou1 [Bpthycosyy ~hpct0,(8))]
~F g Bpthocosyp—hpot0,(8,)]
~F_u3 [Bpthgcosyy 3-hpct0,(835)]
“F_ua BptPacosYy,~hpet0,(8,))

+M .+M +M _+M
x1l "x X

2 3 "x4

(2.167)

(2.168)

(2.169)

(2.170)
(2.171)

(2.172)

(2.1591)
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IN = 2F a - 2F b + (Sl+82)a - (SS+S4)b

ou SWF SWR
*Fgu1 [Zpth c0sY; 140, (5]
+quz[zF+h2cosyh2+O4(62)]

+qu3[zR+hBCosYh2+O4(63)]

+qu2[zF+RchosYh2+o4(62)]

+qu3[zR+RR COSYh3+O4(63)]

3
+qu4[ZR+RR4cosYh4+O4(64)]

+O7[(RR1qu +RR

1¥RRF 1o
+RR3qu3+RR4qu4)sin8]—IWF(m1+w2)

—IWR(&3+¢4)]

(2.1601)

NOTE: If the pitch and roll angles 6 and ¢ are assumed small,

then,
INgw = (8p-81)Tp/2 + (8,-85)Tp/2
“Fyurl2p * BRp + 0,(8;) - hpel
“FyuglZp * BRy + 0,(85) - hpel
“FyuglZg * BRg + 04(83) - hpcl
"Fyu4[ZR + RR4 + 04(64) - hRC]

+M + M + M + M

x1 X2 x3 x4

(2.1631)
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ZN¢J = ZFSWFa - 2FSWRb + (Sl+Sz)a

- (85+8,)b + F_ ,[25 + RRy + 0,(8;)]

ul " F 1

+ Foug Zp + RRy + 0,(8,) ]

+ qu3[zR + RR3 + 04(63)]

+ FXU4[ZR + RR4 + 04(64)]

+RR +RR

+ 07[(RR1FZ +RR 4

u1 TRRoF, 0 F o uaq)singd ]

3qu3

- Iyp(@y + 0y) = Typlag + @y)
(2.1641)
The jacking forces are given by:
_ -1
FJl = -Fyultan (2hFC/TF) (2.173)
_ -1
FJz = Fyuztan (ZhFC/TF) (2.174)
' _ -1
FJ3 = —Fyustan (ZhRC/TR) (2.1751)
] — _1
FJ4 = Fyu4tan (2hRC/TR) (2.1761)
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§2.3.6. Steering Equations

The steering equations are given by:

- _ i )
Mps (Ys5a1 BBy 95p01) § (Fyyi~TpyiBgidcos ¥
; /
* (Foyi*Fauifsas)sin ¥gl
. 55 / . /
PT; cos YiU(Fy 3+F,i%gp10¢08 ¥
- = ; /
(qui quieSi)Sln wi] (2.177)
Voo = 8_  /N.+ a2 [(M., +M . - I_#)/A
CR p Sw' G P T1 zl FW Ll
: 2
b (Mpy + My — Tor)/A o 1/Ko N2) (2.178)
Spwi = Ver/Bpy t Mgy t My, - Ipgr)/Kgpy, 1512
Mssi = Kspi (Spwi ~ Yeg/Api)» i=1,2 (2.179)
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§2.3.7. Tire Rolling Radii

The rolling radii of the tires are calculated by, for

i=1...4:
RR; = A;, for Rppyy < 8; < Ry
= Bpmi TOT Briws 2 44
= R ., for R . < A; (2.180)
w1l w1l 1
zy = z + aSla + 239 TF/Z + ag3Zp + 2aq 04(61) (2.181)
= - a 0,(6 2.182
Z2 z + a31a a32 TF/2 + a33 ZF + 33 4( 2) ( )

2 = Z - a31b + 2ao TR/Z + a33(zR + TR¢R/2)

+ aga 04(6R) - Ol(assz¢R—a33pR) (2.1838)
2y = 2 - ag;b - agy Tp/2 + agg(zp - Tpép/2)

+ (2.1848)

8aq 04(8p) = 0j(agyppép-agapp)

- A
Si i
A COSYpy (2.185)




NOTE:

to be

If

If

zZ - a31b +

Z - a,-b -

31

If the pitch and roll angles 6 and ¢ are assumed

small,

-43—

aSZTR/z + a

aBZTR/z + a

33

33

2p + 2330,4(8p)

Z + a

r * 23304C8

R’

z - ab + TF¢/2 + zp + 04(61)

Z - af - TF¢/2 + Zp + 04(62)

R

+ (¢+0,)T,/2 + O, (6,)
R‘°R 4 R

z + b8 + zp - (0+¢p)Tp/2 + 04(8p)

RRi = --zi +
RR; < Rpyys» BBy
RR, > R ,, RR,
Z35 1=
z5 =
z3 = 2z 4+ bo + 2z
+ 0, [pg(1-005)]
z, =
+ 0, [pp(1-065)]
zZg = z + b + 2z

2z =

z + b + =z

R

R

+ Tp/2 + 0,(8p)

- TR/z + 04(6R)

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

1831I)

184I)

186)

187)

188)

1898S)

1908)

1891I)

1901)
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The ground elevation Zgy which appears in the above

equation is calculated in the program by the equations

Xey = X taap; - (—l)iTFalz/z
+Zagg, i=1,2 (2.
Yo, = Y +aay - (-0 Ty ag,/2 + Zay, i=1,2 (2
Xey = X-baj - (- Ty a2+ Zag,, 13,4 (2
Yo; = Y -Dboay - (-1F Ty ay,/2 + Zay,, 1=3,4 (2.
zg; = bysin[(Xg; =X )/X, 1sinl(Yg-Y)/¥, 1, i =1...4

191)

.192)

.193)

194)

.195)
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§2.3.8. Tire Slip Angles and Contact Patch Velocities.

The velocities along the vehicle axis of the tire

contact patchesare determined by:

N i .
u; = u 4 (F1)TTEr/2 + zpq + 0,(8,q), i=1...2  (2.196)

vV, = v + ar - (zF+RRi)p + 03[RRi(l-cosYhi)p] (2.197)

+ 04(-Gip), i=1...2.

. i .
Wi == w - aq b (—1) TFp/z + 61 + OS(RRiCOSBhip) (2.198)
i=1,2
= i i
u; = u + (-1) TRr/2 + zp4 + (-1) TRq¢R/2 (2.199S8)

+ 01(0R¢Rr) + Og (qGR), i=23, 4

v, = Vv - br - (ZR+RRi)p - RRici)R + (—l)iTRp¢R/2
(2.2008)
+ 0, [-p,(p+65)] + Og[RR, (1-cosy, ;) (p+ép)]
+ 05(-p8y) + Ogl(-1)'Teo 00/21 , i =3, 4
Ww,o= w4 ba + 6p - (1) (p+op)Tp/2 + Oy (<ppépp)
(2.2018)



u, = u +
1
V. =y_Mlr
1
w = w +
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i i =
(-1) TRr/2 + 2pd + 05(q6R), i=23, 4 (2.1991)

br - (zR+RRi)p + 03[RRi(1—cosyhi)p]+ 05(-p6R)

cos O .

i=23, 4
(2.2001)
. i
bg + Gi - (-1) (p)TR/z + OS[RRiCOSBhi(p)]
i=3, 4 (2.2011)
- cos 6cos ¢
XGi v - (2.202)
/cosz(p+ sinz ¢ sinz 0
_ sin 6

sin eXGi

/Eos2 ¢+ sin2 ¢ siﬂzie

NOTE: 1If the pitch and roll angles 6 and ¢ are assumed to

be small then,

Gi

Gi

COSSXGi = 1 (2.204)
sineXGi = 0 (2.205)
= uy cos eXGi + W sin eXGi , 1=1,2,3,4
(2.206)
= vy cos ¢ - L sin ¢ i = 1,2,3,4 (2.207)
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DA o=¥E 3

Cvi = (uGi+vGi) , i=1...4 (2.208)
a cos . - a cos .
vi o= cos’1[ 11 Pywi = 21 Cywi ] o4
2 Z ’
Lcose \[ cos aywi + cos BywiJ (2.209)
' 1
(Vel)i = Uy, cOS wi + Vs Sin wi , i=1...4 (2.210)
-1 {Va6i
B; = tan ™ - wi sgn (uGi)’ i=1,2,3,4 (2.211)

Gi
NOTE: If the pitch and roll angles 6 and ¢ are assumed to

be small, then
i=1...4 (2.212)

sin ¢, i=1...4 (2.213)

v
= -1 __G’_j.‘._ - j i=
Bi tan [ ] wi sgn u.. , 1 1,2,3,4 (2.214)
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§2.3.9. Wheel Spins and Longitudinal Slips

The wheel angular velocities are given by

w; = (1—si)RRi/(Ve1)i , i=1...4 (2.215)
The longitudinal slips are calculated by:
FRONT END
D1 = (Vel)lA1 (2.216)
D2 = (Vel)zA1 (2.217)
=2 =2

Al = IF - IFC (2.218)

= _ — 2
IF = IWF + iIDF(ARF) (2.218a)

= _ — 2
IFC = &IDF(ARF) (2.218b)
FCi = ny + Cisi (2.218¢c)
= 01 0y vl F! 2.218d
Tli = [Sl-a—S_;(sl)—ul(sl)] Ri ( . )
ou !
= -F! .._1. 0

3 FRiBsi(si) (2.218¢)

B . 2
Ql = (Vel)l/(Vel)1 - (RRl) IFcl/D1 (2.219)
Qy = (Vel),/(Vel), - (RR,)?Tz,/D, (2.220)
E1 = (RRl)(RRz)IFCz;z/D1 (2.221)
E2 = (RRl)(RRZ)IFCcl/D2 (2.222)

T, = (l—AD)(KﬁF/Z)TﬁD + TQBi , i=1,2... (2.223)
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(Vel);/(Vel); + [(RR;)ZTon ~(RR ) (RRy)Tpon,

- (BR))(IpT)~Tpet,)1/D, (2.224)

(vél)z/(Vel)z + [(RRZ)Z Tang - (RRl)(RRZ)iFCn1
- (RRZ)(TFTZ-TFCTI)]/D2 (2.225)
r, = 21 + 21?3?&2: Eizz?l (2.226)
r, = gz . zzfgi‘gz: .ﬁfgzi’z (2.227)
SA L ey - 4@, - BENIE (2.228)
SA % hiapreg? - 490, - BENIE (2.220)
0, = [(sg—rl)(x2+Ql)-El(r2-sg)]/(Az—xl) (2.230)
0, = [El(rz-sg)-(sg—rl)(xl+ql)]/(xz-xl) (2.231)
s, = T, +elekl(t_t°) + ezelz(t_to) (2.232)
r, - (Algil)elexl(t_t°) g (13%§l)92ekz(t_t°) (2.233)
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Special Case: If E1 = 0
s; = I+ (sg—rl)e"Ql(t'tO) (2.234)
s, = T, - (Iy-sg)e” F(t7%,) (2.235)
Note that for both cases if
S5 > 1 S5 =1 , i=1,2 (2.236)
s, = R - Qs - Ejs, (2.237)
5, = Ry - QyS, - Ey8, (2.238)
w, = ﬁ%5[(vél)l(l-sl)-él(vel)l] (2.239)
0y = E%;[(Vél)z(l—sz)—éz(Vel)z] (2.240)
REAR END
Dy = (Vel)h, (2.241)
D, = (Vel),a, (2.242)
A, = Tg - Igc (2.243)
I, = I, + 31, (AR (2.243a)
T = 31, (AR (2.243Db)
Q = (Vél)s/(Vel)3 - (RRS)ZTRcs/DS (2.244)
Q, = (Vel),/(Vel), - (BR,)?T 2, /D, (2.245)
E, = (RRB)(RR4)TRCC4/D3 (2.246)
E, = (RRS)(RR4)TRC;3/D4 (2.247)



Sq
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T, < XD(ARR/Z)TQD + TQBi , 1= 3,4 (2.248)

= (vel)y/(vel)y + [(RR5)®Tong - (RRy)(RR T n,

(RR3)(TRT3—1FCT4)]/D3 (2.249)

- (vé1)4/(Ve1)4 + [(RR4)2TRn4 - (RRy)(RR,)T N,

- (RR4)(TRT4—TRC13)]/D4 (2.250)
r = D3, EaFaRg - B3R,Q5 (2.251)
R E.E,R, - E,R,Q
_ a 37474 T Mat3%g
r, = 3 + 3, (030, F,E,) (2.252)
Q,+Q
pe 3 %4 2 3
=m0t R(QyrQy)T - 4(Q3Q,EgEy)] (2.253)
Q3%Q, 2 3
= -3 + 30(Qq+Q, )" - 4(Q3Q,-EgE,)] (2.254)
= [(83-T3) (A +Q3)-Eg(T4=50)1/ (A -Ag) (2.255)
= [Eg(T,=s3)-(53-T3)(A5+Q3) 1/ (A4=Ag) (2.256)
Aa(t-t ) Ay (t=t )
= g+ 0.’ % +oe a0 (2.257)
Ao +Q Aa(t=t ) A, +Q A (t-t )
=, - 3E 3)63e 3 o’ _ 4E 3)946 4 o
3 3 (2.258)
Special case: If E3 =0
-Q (t-t )
- o 3 o)
sg = T+ (sg-Ty)e (2.259)
_Q4(t—to)

. _ _O
sg = T, - (T =sg)e (2.260)
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Note that for both cases, if

4

> 1 S5 =1 , i = 3,4
S3 = RBg - Qgs3 - Egs,
Sq4 = By - Qys, - E;sq

1 : .
ﬁﬁg[(vel)B(l_SB)—SS(Vel)S]

1 . .
Eﬁ;[(Ve1)4(1-s4)—s4(Ve1)4]

(2.

(2.

(2.

(2.

(2.

261)

262)

263)

264)

265)
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§2.3.10. Tire Camber Angles

The tire camber angles are calculated by

. -1 A
¢CGi sin (cos wai) + KCF FSi i=1,2 (2.266)

. =1 I
¢CGi sin (cos wai) + KCR FSi i= 3,4 (2.267)

NOTE: If the pitch and roll angles 6 and ¢ are assumed to

be small, then

]
]

¢CGi 8 sin wi + ¢ cos wi + ¢i + KCF FSi i 1,2 (2.268)

¢CGi = @6 sin wi + ¢ cos wi + ¢i + KCR FSi i 3,4 (2.269)
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§2.3.11. Tire Forces and Moments

The tire radial forces are calculated by, for i = 1...4:
FRi = (Rw1 Ri) (2.270)
Fo.-Fo.sind ..
Fr, o= — c§;¢ e (2.271)
CGi

Note: If the pitch and roll angles 6 and ¢ are assumed to

be small then

Fhi = Fpy (2.272)

Camber causes the slip angles to be modified by Bi, where:

For F!. < A

Ri — "T1li
= T31(A4i )F ¢CG1
(a) B = (F F] ]
Ri~ Ri~Ar2i (2.273)
1
For Fp,  Apyj
. Arsi®cei (2.274)
(o) By = m A, .
4i7T41i
where
Apys = AgiAQp , i=1...4 (2.274a)
Apg; = Agihg: » i=1...4 (2.274b)
A . = A A . i=1...4 (2.274c)

T31i 21731

A,. = A

T4i (AQ 1) - A

i=1...4 (2.2744d)

1i T11 oi

A-. = A (A

T51i T11 3i i=1...4 (2.274e)

4i Ap1i)
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The circumferential tire forces are calculated by:

2

= t ®
Hpi Pp1i * Pp2ifri * Pm3ifri (2.275)
h. = S.. + S..FL. + S..Fi 2 (2.276)
si 0oi ¥ S1iFri * S2i¥Ri '
- o - ]
ST, Ro; - RysFhy (2.277)
Myy = uSilcos(Bi)ISNi (2.278)
m. = —Pi(1.0-57.38 _|8,+B, )SN (2.279
1i BTN -3B,; 1B;*+8; SNy - 20 W)
" _ Mg upi(1.0—57.3Bci|si+si|)3Ni (3. .
2i (1.0-5T,) :
TP T
1i _ 1i I
If my 4 < §T;— y Myy < §T; and Moy = 0.0 (2.281)
Hoi = M1i™Mpy (2.282)
1t s; > SI; , W] = mMys;+ug; (2.283)
a5 . = I '
Ny HoifRi’ %1 my;iFRi (2.284)
It s, <SI, , uj = mys, (2.285)
= — i 1
ng 0, & my Fps (2.286)
= Tt
Foy WiFL: (2.287)

The tire side forces are given by, using the CALSPAN -

APL method:

N ' 2
gy = (ByyFpy+(BC);+By Fp, ")SN, (2.288)

(BC)i . BBi + B2i Cvi (2.289)
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For F!.<A

Ri—"T1li
_ A, .F! (F' -A )-Ano
(a) Bi . 1i R; F' 21 T2i (Bi+8i) (2
2i RiM yi
For FR AT11
- AT
(b) B, = (B;+B1) (2.
i uy1FRl i
If [B;l< 3
(a) g(B.) = B~ 3B, |8, + o= B,° (2
i i 3"i'"i 27 Ti :
otherwise
(b) (B = B;/I[B;l (2.
v - 1
FSl FR1 ylg(B ) (2.
If the partial Data Deck model is used, the tire side
forces are calculated from:
By
T1 = SPT. + 1 (2.
i
s . [Ri“RMini (2
2 SPZi ’
Oeci—Oying
_ 'CGi "Mini
If Bii 0, T3 = SPSi + 1 (2
dyaxi—PCGi
axi "CGi
If Bi< o, T3 SPBi + 1 (2.
J1 = [Tl], El = Tl—J1 (2.
Jz = [Tz], gz = TZ—J2 (2.
J3 = [T3], £3 = T3--J3 (2.

where [ ] means to truncate to the closest smaller integer,

.290)

291)

292)

293)

294)

295)

296)

.297)

298)

299)

300)

301)
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FSi = Ti(Jl,J2,J3)+51[T1(J1+1,J2,J3)-Ti(J1,J2,J3)]+

Ez[Ti(Jl,J2+1,J3)—Ti(J1,Jz,JB)]+53[Ti(J1,J2,J3+1)—
Ti(Jl,Jz,JB)]+51£2[T1(J1+1,J2+1,Jé)—Ti(J1+l,J2,JB)—
Ti(Jl,J2+1,J3)+Ti(J1,JZ,JB)]+glg3[Ti(J1+1,J2,J3+1)—
Ti(J)*+1,d5,d3) =T, (J;,J5,Ig+1)+T, (I ,J,,5) ]+E,E, x

[Ti(Jl’J +1,J3+1)—Ti(J1,J +1,J3)—Ti(J1,J J3+1)+

2 2 2’

Ti(Jl,J2,J3)]+g15253[Ti(J1+1,J2+1,J3+1)—Ti(J1+1,J2+1,J3)

Ti(Jl+l,J2,J3+1)—Ti(J1,J2+1,J3+1)+Ti(J1+1,J2,J3)+

By

.J ol Er-a—
Tl( 109 +1,J3)+Ti(J1,J2,J3+l) Ti(Jl,Jz,JS)] |Bi| SN.

2 i

(2.302)

In both methods of calculating the side forces, the
effects of longitudinal slip are accounted for by a friction
roll-off table. The amount that the side force is reduced
is Fi’ where

For j such that Fg; y_3y7 < |s.| < Fgjj1  then

. (Is;|-Fgs(4-1y1)

Fi = Fsi(g-102 ¥ (hgy 1Py go1y0) 0 S1327781(3-1)2
(2.303)

Fg; = Fgi(1-F;) + FﬁiuSilsin(Bi)|FiTFg;TSNi(2.304)

The tire aligning and overturning moments are given by

M, = Og; + (01340551906 1)Fgi Ry * O31%cGiFRi
(2.305)



= ' '
M,y (Ky1FRi+Koi | Fgq DFgy + Kg3FpiMogs | (2.306)

The skid number ratios are given by

SN, = (SN)gg,/(SN)p. , i=1...4 (2.306a)
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§2.3.12. Brake and Drive Torques

The drive torque can be specified explicitly as a

function of time through the Driver Module. If this is not

done, it is given by:

If u > Vc , TQD = 0. (2.307)
Otherwise TQD = KTQ(VC—u) (2.308)
If TQD > TQDMAX i TQD = TQDMAX . (2.309)

When the antilock system is absent, the brake torques

are found from:

For j such that BFl(j-l) < Pgp, £ BFlj , then:
Ty = AgyBraci-1)"PrLBri(j-1) Braj
- Bpa(j-1))/ (Fr157Bri(j-1y’1  (2-310)
Tdgy = *p2lPracj-1)*PrLBri(j-1)) Praj
- Bpg(y-19/ Br1;Br1¢y-1))3 (281D
For j such that BRl(j-l) < Py, 2 Ble , then:
Mgz = *83[Bra(j-1)"PrL Bri(j-1)) (Br2j
- Bro(j-1))/(Br1j-BRri(j-1))1  (2-312)
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T4 = *BalBr3(j-1)*PrLBr1¢j-1)) (Br3;

- BRB(j—l))/(BR]j—BRl(j_l))] (2.313)

The antilock systems in the simulation are described

in detail in Ref. [2.1]. 1If activated, then the inputs are

1
P, = 3(Agy+Ape)Ppr (2.314)
p = l(x +A., )P (2.315)
R 5(Ag3*Apg ) Py, '
and the output is the brakeline pressures BPl’ sz, which
are used to célculate brake torques via:
For j such that BFl(j—l) < BP1< BFlj , then
T1 = Bracj-1) ¥ CBp17Bri(j-1)) Braj
= Bra(3-1)?/Br137Br1¢5-1)) (2.316)
TRgg = Bpg(ji-1) ¥ BprBpr(j-1)) Brs;
= Bps(5-1)7/ BrLi Brr(j-1)° (2.317)
For j such that BRl(j—l) < Bpy <Ble , then
TRz = Bporj-_1) * (BpaBgri(j-1)) (Braj
= Bro(-1))/(Br137Bri(3-1)’ (2.318)
TRy = Bpg(j-1) ¥ (Bpa~Bry(j-1))(Bgaj
) (2.319)

= Bp3(5-1)?/Br13 Br1(j-1)
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The antilock system is organized as follows:

MODULE = 1 : Pp, =P, , P =P,
MODULE = 2 Pppy = Pppp = P+ Pppg = Pq
MODULE = 3 Pppy = Pgpg = Py » Pgpg = Pppy = Py

LOGIC TO DETERMINE IF ANTILOCK IS CURRENTLY

ON OR OFF.

ANTILOCK NEVER ON:

0
Bipi +/ﬁ{7At

NOTE: BLpi = PBPi

BLPi

ANTILOCK ON AT SOME TIME:

NOT CURRENTLY ON:

Bips = Brp; + Ry At
ANTIIOCK CURRENTLY ON:
Bipj = Bpp; * Ry ot
NOTE:
Rl K _BLPi/
T1
NOTE : Bips < Pgg = INPUT PRESSURE

(2.320)

(2.321)

(2.322)

(2.323)

(2.324)

(2.325)

(2.326)

(2.327)
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MODULE = 1 Bpy = Bpy = Bypy » Bpg = Bpy = Bypy (2.328)
MODULE = 2 By = Brpy » Bpg = Brps » DBpg = Bpy = Brpg (2.329)
MODULE = 3  Bpy = Brpy » Bpy = Brpo (2.330)
Bps = Brps » Bpg = Brpg (2.331)

wp1i = ©p1i - 1-9 gAt/ﬁﬁi (2.332)

wpni = Upgy - 4 EBAL/RR; (2.333)

Ry = /Pop; - Brpy| /7 (2.334)

VoLi = “K2 Y|Pepi ~ Brpi| (2.335)

Vori = Vori * VOLi At (2.336)

R, = -Bpi/1y (2.337)

Vori = Xy Brpi (2.338)

Vag: = Voo + V. .. At (2.339)

OLi OLi OLi

The output quantities are BPl’ sz, BPB’ BP4'
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§2.3.13. Center of Mass Accelerations

The accelerations of the center of mass are given by
A = U - vr + wq (2.340)

v + ur - wp (2.341)

=3
<
I
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§2.4. Nomenclature

Symbol

a

ij

Apqy:Bpas ArpgiBArgi Arsg

Afpy

Definition

X-distance between the cen-
ter of gravity of the sprung
mass and the centerline of
the front wheels.

Flements of the (3x3) matrix
relating the orientation of
the vehicle fixed axis system
to the inertial frame.

Lencth of steering linkage
arm at front wheel i.

Length of Pitman arm.

Ratio of propeller shaft speed
to vheel speed for front and
rear respectively.

Temporary variables defined
in §2.3.11.

Accelerations of the center
of mass in the X and Y direc-
tions, respectively.

Proportionality factors giv-
ing limits of small-angle
cornering and camber stiff-
ness variation with tire load-
ings.

Coefficients
ted to small
stiffness at

Coefficients

of curves fit-
angle cornering
wheel i.

of curves fitted

to small angle camber stiff-
ness at wheel 1.
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Symbol

ci

Fij’ "F2j’ "F3j

LPi

o
Byi, Baj» Bgy: Byy

(BPT)i

B B

B R2j’ °R3j

R1j’

D r To Mg
cr el SRcw’ . L et e
I N e A e
cTik

Definition

y-distance between the cen-
ter of gravity of the sprung
mass and the centerline of
the rear wheels.

Tire parameters which give the
influence of slip angle and
camber angle on the circumfe-
rential tire force (not meas-
ured by Calspan).

Coefficients in look-up table
for hrake line pressure ver-
sus torque for front wheels.

Brake line pressure outputs
from antilock pressure modu-
lator.

Coefficients of curves fitted
to the lateral friction coef-
ficient at wheel i.

Coulomb friction breakpoints.

Coefficients in look-up table
for brake line pressure ver-
sus torque for rear wheels.

Coulomb damping coefficients
for the suspensions, front and
rear, respectively.

Aerodynamic moment coefficients.

Temporary variables used in
§2.3.4.

Aerodynamic stability deriva-
tives.

L’ CM’ CN,

as tabular func-

Arrav containing C

CX’ CY and CZ

tions of the aerodynamic angle
of sideslip 1t for zero aerody-

namic angle of attack.



Symbol

vi

X' 7Y’ TZ

130 7237 7337 743

CG

dcxik

Definition

Resultant velocity of the
contact point of wheel i in
the ground plane.

Aerodynamic force coeffi-
cients. For zero angle of
attack they are given as tab-
ular functions of the aero-
dynamic angle of sideslip 7.

Coefficients of the fifth
degree polynomials fitted to
wheel camber angles versus
suspension deflections.

Horizontal distance between
the aerodynamic center and
the sprung mass center of
gravity.

Array containing the aero-
dynamic increments in the
axial force coefficients

as a tabular function of the
aerodynamic angle of attack.

Temporary variables used in
§2.3.9.

Coefficients of fifth degree
polynomials fitted to wheel
toe angle versus suspension
deflections.

Temporary variables used in
§2.3.9.

Coefficients of fifth degree
polynomials fitted to front
wheel caster angles versus
suspension deflections.



Symbol

APi
ARi

BSi

Ci

f(RAC)

RMini

SHi j

Si

Fsi

Fopij
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Definition

Antipitch forces in suspen-
sions.

Antiroll forces in suspen-
sions.

Differences between linear
and piecewise linear modeling
of spring forces.

Circumferential tire force at
wheel 1.

Percentage reduction in side
force at wheel i due to longi-
tudinal slip.

Temporary variable used in
§2.3.4.

Jacking forces.
Radial tire force at wheel i.

Tire normal force to ground
at wheel 1i.

Smallest value of the normal
force at wheel i for which
data is available.

Shock absorber forces at the
discrete values Xij"

Tire side force at wheel 1i.

Variable connected with the
tire side force calculation
used in §2.3.11.

Spring forces at the discrete
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Symbol

Fswr: Fswr

Sijk

xINi

xXui

FoiNi

yui

zZui

F F F F

zl’ =22’ z3’ z4

F(1), F(2), F(3), F(4), F(5),
F(6), F(7), F(8), F(9), F(10)

Definition

Front and rear static com-
ponents of the sprung mass
weight.

Nondimensional tire side
force shaping function ver-
sus slip at wheel i. Defined
at points, linear interpola-
tion in between (friction
roll-off curve).

Initial values of the tire
side forces in the x-direc-
tion when the vehicle is in
the static equilibrium posi-
tion.

Components of the tire side
force in the x-direction.

Initial values of the tire
side forces in the y-direc-
tion when the vehicle is in
the static equilibrium posi-
tion.

Components of the tire side
force in the y-direction.

Components of the tire side
force in the z-direction.

Components of the tire forces
in the z-direction.

Elements of the "force and
moment'" column vector in
the equations of motion.

Coulomb damping forces in
suspensions.

Suspension forces produced by
deflection of springs and
bump stops.
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Symbol

3i

4i

FC

|
]

F’ "FC

FW

Definition

Viscous damping forces in
suspensions.

Suspension forces produced
by auxiliary roll stiffness-
es.

Acceleration due to gravity.

Distance between the ground
and the static roll center
of the independent front

and rear suspension, respec-
tively.

Variables used in §2.3.9.

Moment of inertia of indivi-
dual front wheels about the
kingpin axis.

Moment of inertia of solid

rear axle about a line through
its center of gravity and para-
llel to the x-axis.

Variables used in §2.3.9.

Moment of inertia of individual
front and rear wheels about
their spin axis.

Moment of inertia of the sprung
mass about the x,y,z-axes,
respectively.

Product of inertia of the sprung

mass with respect to the x,z-
axes.

Variable defined in §2.3.1.

Variable defined in §82.3.1.



-70-

CF

Ker

KFi

Kor1’ Korez

Kors, Kora

RS

SC

SLi

SR

Ti

TQ

1i’ 72i’ T3i

LR

Definition

Indices of a point in the

tire data array. glves the
value of the slip a%gle 2
gives the value of the
radial force and J3 gives the
camber angle.

Lateral force compliance cam-
ber coefficient front wheels.

Lateral force compliance cam-
ber coefficient, rear wheels.

Variables used in §2.3.3.

Front overturning moment com-
pliance cambers.

Rear overturning moment com-
pliance cambers.

Roll steer coefficient of the
solid rear axle (positive
for roll understeer).

Flexibility in steering col-
umn and the steering gear
box.

Flexibility in steering linkage
at front wheel 1i.

Aligning torque compliance
steer coefficient at the rear
wheels.

Tire load deflection rate in
the quasi-linear range for a
single tire at wheel 1i.

Gain in the drive torque.

Coefficients of curves fitted
to the tire aligning torque
at wheel 1i.

Rear lateral force compliance
stecer.
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Symbol Definition

1 Length of the vehicle
(L= a+b)

1v Characteristic vehicle
length upon which the aero-
dynamic moment coefficients are
referenced.

M(i,d) Matrix multiplying the col-

umn vector of accelerations.

Module Variable specifying the type
of artilock system present.
MODULE can take on the values
1, 2, or 3.
MODULE=1: Two modules, one sen-
sing the average of the two
front wheel spin rates and
controlling the front brakes,
and the other similarly senses
and controls the rear.
MODULE=2: Three modules, one
sensing the average of the two
rear wheel spin rates and con-
trolling the rear brakes, and
the other two independently
sense and control the two front
wheels.
MODULE=3: Four modules, each
sensing one wheel spin rate
and controlling the corresponding
brake.

M Total sprung mass.

S
MSSi Torque applied to front wheel
i by the steering system connec-
ting rod.
MTi Moment acting at front wheel
i about the kingpin axis due
to tire-road contact forces.
MuF’ MuR Total front and rear unsprung

mass, respectively.
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Symbol Definition

Tire overturni m nts.
x1’ Mx9o x3' x4 e ng moments

le, Mzz, MzS’ Mz4 Tire aligning moments.

Slopes of straight line seg-

11 21 ments approximating the circum-
ferential friction coefficient
at wheel 1i.

NG Gear ratio of the steering
gear box.

Oijk... Oijk... is defined by:
Oijk = 0 IF ASSUMPTION i

OR ASSUMPTION j OR ASSUMPTION
k...IS BEING MADE. OTHERWISE
0. . = 1.

ijk...
Assumptions are:

1. The distance between the
rear axle center of gravity
and the roll center is taken
to be zero, i.e.,

PR = 0.

2. The angular velocities are
taken to be small so that their
products and squares can be ne-
glected, i.e.,

2 2 2 .
pq,pr,qr,p ,q ,r I O.

3. The roll angle ¢ and pitch
angle 6 of the sprung mass
are taken to be small so that

sin¢ I ¢, sine : @

cos¢ - 1, cose > 1

4. The suspension deflections
61,62, and GR are taken to be

much smaller than the distances

Zp and Zg, 1.e.,

61,6 ,0<< 7 Z

2’ R F’ “R



SIAE

Symbol Definition

5. The suspension deflections

61, 62, GR and their deriva-

tives § §_ are taken

17 %20 Oy
to be so small that the fol-
lowing products can be neglec-
ted:

. . - L4 2 .
§.p,8.q,6.4,8.7,8%2 - 0, j=1,2,R.
§P1049:059:04%, 04 J

6. The roll angle ¢, is taken
to be so small that %he fol-
lowing products can be neglec-
ted:

. "5 9 97 9 Hrd
7. Terms not present in the APL
model.

03. Coefficients of functions fitted
i F p
to tire overturning moments at
wheel 1i.
, P Proportional brake pressure
BP3 BEB4 input to brake pressure modu-
lator.

0 0

0i'911°921

PBPl’ PBP2’ B

P p Proportional brake pressure
input to brake pressure modu-
lator, front and rear, res-
pectively.

PFL Brake line pressure.

Pil’ PiZ’ P13 Coefficients of curves fitted
to antipitch forces.

p Angular velocity of the sprung
mass about the x-axis.

P Dimensionless x-component of
the angular velocity of the
sprung mass relative to the
wind.

PT Front wheel caster offset.

[



Symbol
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Defiuition

Angular velocity of the
sprung mass about the y-axis.

Dynamic pressure.

Dimensionless y-component
of the angular velocity of
the sprung mass relative to
the wind.

Variables used in §2.3.9.
Variable used in §2.3.12.

Coefficients of curves fitted
to antiroll coefficients.

Auxiliary roll stiffness at front
suspension.

Auxiliary roll stiffness
at rear suspension.

Rolling radius of wheel 1i.

Average value of the rolling
radius of wheel 1i.

Rim radius of wheel 1i.
Undetlected radius of tire 1i.

Coefficients fitted to curves

giving the value of the longi-
tudiral slip at which the peak
circumferential tire force at

wheel i occurs.

Variables used in §2.3.9.

Angular velocity of the sprung
mass about the z-axis.

Dimensionless z-component of the
angular velocity of the sprung
mass relative to the wind.



Symbol

SI

SN.
1
(SN) 504

(SN)Ti

SP1i

Sp2

SP3,
1

(ST);, (ST),

Sh:y S S

0i* "1i’

Sl’ SZ’ SS’
Sl’ 82’ SS’
5;, 5, 55,

2i

1

07]
1.8

2]
=N

1
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Definition

Projected frontal area of
the vehicle.

Value of the longitudinal
slip for wheel i at which

the peak circumferential tire
force occurs.

Longitudinal slip at wheel 1i.

Value of the longitudinal
slip at wheel i at a previous
time.

Skid number ratio at wheel 1i.

Skid number of simulated sur-
face at wheel i.

Skid number at wheel i of sur-
face on which the tire data
were obtained.

Change in the slip angle between
tire data points at wheel i.

Change in the normal force be-
tween tire data points at
wheel 1i.

Change in the camber angle
between tire data points at
wheel 1i.

Variables used in §2.3.3.

Coefficients of curves fitted
to the slide braking coefficient
at wheel 1i.

Suspension forces.

First average of suspension
forces.

Second average of suspension
forces.
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Symbol Definition
TF’ TR Wheel tread width at the

front and rear, respectively.

TQBi Brake torque at wheel 1i.

TQD Drive torque at wheel 1i.

TQDmax Maximum value of the drive
torque.

TSR y—-distance bétween the spring
centers for the solid rear
axle.

Tl’ T2, T3 Variables used in §2.3.11.

t Time.

to Time prior to the current
time increment.

u Velocity component of the
sprung mass in the x-direction.

Ugi Forward velocity of the contact
points of the front wheels in the
ground plane.

uy Velocity component of the con-
tact point of wheel i in the
x-direction.

ur x-component of the sprung mass
velocity relative to the wind.

v Velocity component of the
sprung mass in the y-direction.

VCW Magnitude of the vehicle velo-
city relative to the wind.

VC Desired vehicle velocity.

(Vel)i Velocity in the direction

of the wheel plane of the tire
contact point of wheel i in the
ground plane.
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Symbol

Gi

wv

Definition

Lateral velocity of the con-
tact point of wheel i.

Velocity component of the
contact point of wheel i in
the y-direction.

Fluid volume in expansion
chambers of pressure modu-
lator.

y-component of the sprung mass
velocity relative to the wind.

Velocity of the cross wind
with respect to the inertial
axes, measured at the sprung
mass center of gravity.

Velocity component of the
sprung mass in the z-direction.

Array giving the cross wind
velocity as a function of the
position X.

Velocity component of the con-
tact point of wheel i in the
z-direction.

z-component of the sprung
mass velocity relative to the
wind.

Inertial coordinate

Inertial coordinate of the con-
tact patch of wheel i.

Road elevation datum coordinate.

Wavelength of the road undula-
tion in the X-direction.
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Symbol

wVv

Si

(0)

Definition

Sprung mass fixed coordinate.
Inertial coordinate.
Sprung mass fixed coordinate.

Inertial coordinate of the
contact patch of wheel 1i.

Displacement of the steering
system connecting rod.

Road elevation datum coordi-
nate.

Distance between the kingpin
axis and wheel center-line,
measured along the wheel spin
axis at front wheel i.

Wavelength of the road undula-
tion in the Y-direction.

Inertial coordinate.
Sprung mass fixed coordinate.

z-distance between the center
of gravity of the sprung mass
and the centers of gravity of
the front and rear unsprung
masses, respectively.

Coordinate of wheel i center
above the road surface.

Road elevation under wheel i.

Value of Z at time equal to
Zero.
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Symbol

ci

a o

h1l’ “h2’ ®*h3’ “h4

°r1’ %R2’ “R3’ “R4

]

aywl’ o‘yw2’ awa’ ywd

ci

Bhi+ Bpas Bp3s Bpg

B B

R1’ Pr2’ Br3’ Pra

B B B 8

ywl’ “yw2’ “yw3’ “ywd

Ty

17
Yhi’ Yh2’ Yh3’ Yha

YR1® YrR2’ YR3' YR4

Definition

Aerodvnamic angle of attack.

Angles the lines of intersec-
tion of the wheel planes with
the ground plane make with
the X-axis.

Angles the tire radial forces
make with the x-axis.

Angles the tire radial forces
make with the X-axis.

Angles the lines perpendicular
to the tires make with the X-
axis.

Angles the lines of intersec-
tion of the wheel planes with
the ground plane make with the
Y-axis.

Angles the tire radial forces
make with the y-axis.

Slip angle at wheel i.

Equivalent slip angle at wheel
i produced by camber.

Nondimensional slip angle at
wheel 1i.

Angles the tire radial forces
make with the Y-axis.

Angles the lines perpendicular
to the tires make with the Y-
axis.

Variables used in §2.3.9.

Angles the tire radial forces
make with the z-axis.

Angles the tire radial forces
make with the Z-axis.
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Symbo1l

Y

wal’ wa2’ wa3’ ywé

' '
Yl’ Yo 'Y5

490 29

Ay,

1

aey, A8,

Fwi

INi

Si

Definition

Angles the lines perpendicular
to the tires make with the
Z-axis.

Variables used in §2.3.1.

Variables used in §2.3.9.

Static toe angle bias at
wheel 1i.

Static caster angle at
wheel 1i.

Angular displacement of front
wheel i produced by the steer-
ing system.

Static deflection of wheel i
due to the vehicle 1load.

Suspension deflection relative
to the vehicle from the posi-
tion of static equilibrium
measured from the center of
the solid rear axle.

Dynamic suspension deflection
relative to the vehicle measured
at the center of wheel i, or at
the spring location for the solid
rear axle, from the no load
position.

Steering wheel angular dis-
placement.

Suspension deflections relative
to the vehicle from the position
of static equilibrium mecasureaed
trom the centers of wheels 1, 2,
3 and 4, respectively.

Variables used in §2.3.9. and
§2.3.11.

Variables used in §2.3.9. and
§2.3.11.



®%Gi

‘g1’ *B2’ *B3’ ‘B4

Poi® Mi1i
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Definition

Variables used in §2.3.9.
Pitch angle.

Caster angles relative to the
vehicle fixed coordinate sys-
tem (positive for rearward
inclination of the steering
axis in the upward direction).

Angle between the x-axis and
the ground plane at wheel i.

Brake torque multipliers.

Drive torque distribution
factor.

Variables used in §2.3.9.
Variable used in §2.3.11.

Peak braking coefficient at
wheel 1i.

Coefficient of sliding friction
at wheel 1i.

Lateral friction coefficient
at wheel 1i.

Circumferential friction co-
efficients at wheel i for slip
equal 0 and 1, respectively.

Variables used in §2.3.10.

Air density

Distance between rear axle
center of gravity and roll
center, positive for roll
center above the c.g.



Symbol

ZNBS

ZNeu

ZN¢R

ZN¢S

ZN¢u

vs

ZNﬁu
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Definition

X and y-components, respec-
tively, of the resultant
forces on the unsprung mass.

Sum of all the masses.

y-component of the resultant
aerodynamic moment on the
sprung mass.

y-component of the resultant
moment due to the forces
acting on the unsprung mass.

Rolling moment acting on the
s0lid rear axle.

x-component of the resultant
aerodynamic moment on the
sprung mass.

x—-component of the resultant
moment due to the forces acting
on the unsprung masses.

z-component of the resultant
aerodynamic moment on the sprung
mass.

z-component of the resultant
moment due to the forces acting
on the unsprung mass.

Aerodynamic angle of sideslip.
Variables used in §2.3.9.

Camber angle of wheel i rela-
tive to the ground plane.

Largest value of the camber
angle at wheel i for which
data is available.



Szmbol

mini

SAi

¢SA01’ ¢SA02

1’¢2’¢3’ 4
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Definition
Z=rinuition

Smallest value of the camber
angle at wheel i for which
data is available.

Right and left kingpin incli-
nation angle at equilibrium sus-
pension position.

Front wheel kingpin inclinations
at the equilibrium position.

Roll angle.

Camber angles of the wheels
relative to the vehicle fixed
coordinate system. (Positive
when clockwise viewed from the
rear).

Angular displacement of the
solid rear axle about a line
parallel to the x-axis through
the rear axle center of gravity
(positive when clockwise viewed
from the rear).

Suspension deflection relative
to the vehicle from the position
of static equilibrium measured
at the spring location i.

Deflection of wheel i (for a
solid rear axle) relative to
the vehicle from the position
of static equilibrium.

Coefficients for piecewise
linear springs.

Yaw angle,

Steer angle of wheel i in the
ground plane.

v is the steer angle of wheel
i"relative to the vehicle-fixed
coordinate axis system, posi-
tive for clockwise steer as
viewed from above the vehicle.
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Symbol
“p1i’ “D2i
Yxw’ wyw

Definition

Threshold levels of the angular
deceleration of the wheels.

Angular velocity components of
the wind with respect to the
inertial axes.

ws is the angular velocity of
wheel 1i.
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§2.5 DIFFERENCES BETWEEN THE CURRENT SIMULATION AND THE

APL HYBRID SIMULATION

Introduction. The current simulation differs from the

APL simulation with respect to the following items: (i) The
numerical treatment of the wheel slip equations. (ii) The
numerical treatment of the steering system. (iii) The
availability of tire modelling via a partial Data Deck Model.
(iv) The capability of separate braking at each wheel.

(v) The calculation of the static suspension forces.

(vi) The calculation of the pitch equations. (vii) The
introduction of suspension averaging. (viii) The avail-

ability of an antilock system.

These differences will now be discussed individually.
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§2.5.1, Algebraic Form of the Wheel Spin Equations.

In deriving the wheel spin equations, the inertial coupling
of the wheels through the differential gears and the effects of
drive-line inertia cannot be neglected in general. This model

is reflected in Fig. 2.3 below, which shows the front wheels.

DIFFERENTIAL GEAR ‘\D

Fig 2.3

The kinetic energy of the system shown in the figure is

B 2 2 2
T = 3Igguy + #Iygug + lppup (2.342)
where
wp = H(ARR)(wy + wy) (2.343)

It is assumed that elastic deformations are negligible, so that
the potential energy may be taken to be zero. Then Lagrange's

give, on calculating the work done,

o1 * Ipgug =~ FopREyp t 7y (2.344)
Iphy + Tpiy = = FooRR, + 1, (2.345)
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where

TF = Iy * Ipc (2.346)
= 31 __(AR )2 (2.347)
FC DF'\“"F .

T, = (1-ap)(BRR/2)TQ, + TQg;,i=1,2 (2.348)

Solving egs. (2.344) and (2.345) for él and &2 gives

— =2 .2
[IF(-RR1F01+11)—IFC(—RR2FCZ+12)]/(IF —IFC) (2.349)

2 .2
[IF(—RRzFC2+12)—IFC(—RR1F01+11)]/(IF—IFC) (2.350)

The wheel spin kinematic equations are

s; = 1- u(BR,)/(vel);, i=1,2 (2.351)

= i !
( ve])i uGicoswi + vGis1mpi (2.352)

Eqs. (2.349) and (2.350) are stiff differential equations
and are very expensive to integrate digitally. Considerable cost
saving is achieved on converting them to algebraic equations.

The idea to achieve this,set forth by Bernard [2.2}, will
now be followed. Consider a time interval to<t<t+Ato in which
Agjis small enough that RR; may be considered as constants. Then

differentiating (2.351)

o . 2 5
S = [mlRRl( Ve]/i o wlRRi(Vel )1]/(Ve1‘1 , i=1,2 (2-353)

Substituting for wg and éi from egs. (2.349), (2.350), (2.353)

and (2.351) yields.



-88-

(Vél)1(1-51)/(Ve1)1—RR1[TF(r ~RR,;F ) -

S. =
1
Ipc(T9=RR F o) 1/(Vel) [(Tg )2 FC] (2.354)
So = (Vel),(1-s,)/(Vel) y-RR, [T (15-RRyF,) -

Tpo(T1-RR Fe ) 1/ (Vel) o [(Tp) 2-12.] (2.355)

Consider now the circumferential force-normal force re-

lationship

= TR i=
FCi “iFRi , 1=1,2 (2.356)

Let sg be the value of the slips S3 at time to. Then expanding

“i in a two-term Taylor series gives, on substituting into eq.

(2.356),
Foy = ny + 548y, i=1,2 (2.357)
where
0 3% .
ny = [Isy 55, (s ) - My (s )]F , i=1,2 (2.358)
: 1
. = _F 3“1(80) i=1,2 (2.359)
i Ri as i ’ g :

Substituting eq. (2.357) into eqs. (2.354) and (2.355) gives,

after some rearranging,

+ E;s = R (2.360)

Sy * Q84 + Eys, 1

Sq + QZSZ + Ezs1 = R (2.361)

0o

where
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Q = (Ved /(Vel), - (RR)?T,c /D, (2.362)
Q, = (Vel),/(Vel), - (RR,)?T c,/D, (2.363)
E; = (RR))(RRy)I  1,/D, (2.364)
E, = (RRy)(BR,)I .z /D, (2.365)
R, = (Vel) /(Vel) +[(RR,)®Tyn ~(RR,)(RRy) I 0, (2.366)
—(RRl)(TFtl—IFCrz)]/Dl (2.367)
R, = (Vel),/( Vebz+[(RR2)2TFn2-(RR1)(RRZ)IFCnl (2.368)
-(RRZ)(TFTZ—IFCrl)]/Dz (2.369)
D, = (Vel) a, (2.370)
D, = (Vel),, (2.371)
-2 2
b, = T2 - 12, (2.372)

The coefficients in eqs. (2.360) and (2.361) are regarded as
constants in the time interval in question. With this assumption,

the solutions are

AL (t-t ) Ao(t=t )
_ 1 o} 2 o
s; = Fl + Gle + o€ (2.373)
AL+Q A, (t=-t ) Ae+Q Ao (t-t )
_ 1 "1 1 ‘o) 2 ™1 2 o)
Sq = Pz - (—E———)Ole - (—E———)@ze (2.374)
1 1
Special Case: If E1 =0
-Q(t-t )
= (o] 1 o
s = Fl + (sl—rl)e (2.375)
o _Qz(t"'to)

0]
0

2 r2 - (Pz—sz)e (2.376)
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where:

By, EiBoRy - BiRo®y
Lo B EaloRym BoliQy
2 Qy  Qp(QyQy-E Ey)

Q4R )2

N 3
A1 - - 2 + %[(Q1+Q2

~4(0,Q,-E,E,)]

3

Q% 2
Az = - - %[(Q1+Q2)

e}
|

;= [(8T-T ) (g+Q))-Eg(T5-59)1/(Ag-21)

@
|

g = [(E{(Tg=50)-(s7-T{)(A;+Q )1/ (A g=2))

The rear wheels are treated similarly.

(2.

(2.7

(2.

(2.

(2.

(2.

379)

380)

381)

382)
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§2.5.2. Static Treatment of the Steering System.

The steering equations as given in Bohn et al [1.6] are

= ~H +M M i=1,2 (2.383)

(r+dpyi) Ipy iSpwitMp; Mgg M,

erYer T ~CrcrYer)~CorYert (Tp)/ (2p)

*(Mgg1)/(Ap 1)+ (Mgge)/(Ar o) (2.384)
y e v
= N CR, ’“sp N CR
T, = NglKgol(8g,~Ng 2 —SBsgn(sg NGap 31} (2.385)
y e y
~ CR _ Ssp _ Yer
Mssi = Kspil®pwi~ A, Tz o8n(py ALi)] (eRSEEy)

where r is the angular acceleration about the z-axis, § are

Fwi
the angular displacements of the front wheels produced by the
steering system, IFw is the moment of inertia of the individual
front wheels about the kingpin axis, Hi is a viscous damping
coefficient at the front wheel i, MTi is the moment acting at
the front wheel i about the kingpin axis due to tire forces,
MSSi is the moment applied to the front wheel i by the steering
system connecting rod, MZi is the tire aligning moment at wheel
i, MCR is the effective mass of the steering system connecting
rod, YCR is the displacement of the steering system connecting
rod, CFCR(§CR) is the Coulomb friction in the steering gear
(effective at the connecting rod), CCR is the viscous damping
in the steering gear (effective at the connecting rod), ap is
the length of the Pitman arm, ALi is the length of the steering

linkage at the front wheel i, NG is the gear ratio of the

steering gear, KSC is the flexibility in the steering column and
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the steering gear box, GSw is the angular displacement of the

steering wheel, esp is the free play in steering gear box.
KSLi is the flexibility in the steering linkage at the front
wheel i, and Epi is the free play in steer of front wheel i.

The quantities IFw and MCR are quite small, so that the

differential equations (2.383) and (2.384) are 'stiff" in the sense

that the frequencies involved are much greater than those
associated with the sprung mass degrees of freedom. One
approach to such stiff equations is to use '"multiple book-
keeping', i.e., use a much finer mesh for them than is used

for the sprung mass differential equations. However this can
be a costly approach. It is felt that for severe maneuvers

the high frequencies involved have little overall effect on the

vehicle dynamics and so the dynamics terms, which are under-

scored by a solid line, in egs. (2.383) and (2.384) are ignored.

addition, free-play effects, which are underscored by a
dashed line, are felt to be negligible in severe maneuvers and
these are ignored in egs. (2.385) and (2.386).

The tire-road reaction moments acting about the kingpins

are computed by the following equations:

Mp; = = (Ygai BRi05a00l (Fyyi~Fryi 851208 ¥y

* (FyuitFaui®gai)sin ¥yl

PT, cos ¥; [(Fy,i*F, 305457008 ¥

= (FyeuiFzui®si)sin vyl

I
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where Ysai is the distance between the kingpin axis and wheel
centerline, measured along the wheel spin axis at the front
wheel i, RRi are rolling radii, ¢SAOi are the front wheel king-

pin inclinations at the equilibrium suspension position, F

»

xui

F . and F___. are the components of the tire side force in the
yui zui

x,y and z-directions, respectively, eSi are the front wheel caster
angles relative to the x,y,z-axes, wi is the steer angle of
wheel i relative to the x,y,z-axes, ¢SAi are the front wheel

kingpin inclinations, and ﬁTi is the front wheel caster offset.
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§2.5.3. PARTIAL-DATA-DECK TIRE MODEL

In this section, the partial data deck model for
calculating the lateral tire force that is available in the
simulation will be discussed. Recall that the main features
of the CALSPAN-APL model are:

(i) The dependence of the small-angle cornering
stiffness on the radial force Fé is approximated by a 2nd
order polynomial, the coefficients of which are determined
by a least squares fit to the experimental data.

(ii) The dependence of the maximum side force on the
radial force Fé is approximated by a 2nd order polynomial,
the coefficients of which are determined by a least squares
fit to the experimental data.

(iii) Camber effects are taken into account through an
equivalent slip angle.

(iv) The dependence of the side force on the slip
angle is approximated by a 3rd order polynomial (Fiala's
approx{mation).

So that the potential user is not locked in to the
above assuﬁptions, the PARTIAL-DATA-DECK TIRE MODEL uses
look-up tables andinterpolation. In this model the user
must supply the measured values of the side force Fé as
functions of slip angle f, camber angle ¢ and radial

caG?

force Fé. The relevant equations are:

1851

T = + 1 (2.387)

1 SP1i
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F..-F

_ Ri "RMini

T, = 572, + 1 (2.388)

If 8. > 0 T, = bc61~®uini +1 (2.389)
7 » Ty 573, :

If B, < 0 T, = *uaxi~®cai + 1 (2.390)
i v Ty SP3, '

S S A (2.391)

Jp = [Tyl , &y =T, - J, (2.392)

I3 = [Tl , g5 =T, - g (2.393)

where [ ] means to truncate to the closest smaller integer.

Foy = {Ti(Jl,Jz,J3)+£1[Ti(J1+1,J2,J3)—Ti(J1,J2,J3)]+

EZ[T (J J +1,J ) -T, (Jl’JZ’J )]+£3[T (J1 2,J3+1)_
T, (J1 2,J3)]+£1€2[Ti(J1+1,J2+1,JS)—Ti(J1+1,J2,J3)—
Ti(Jl,J2+1,J3)+Ti(J1,J2,J3)]+£1§3[T1(J1+1,J2,J3+1)—
Ti(J1+1,J2,J3)—Ti(Jl,J2,J3+1)+Ti(J1,J2,J3)]+g253

[T, (Jl,J2+1 J +1) T, (J +1,J3)—Ti(J1 J J3+1)+

1’ 2 2’

Ti(Jl,J2,J3)]+£1£253[Tj(J1+1,J2+1,J3+1)—Tj(J]+1,J2+1,J3)—
Ti(J1+1,J2,J3+1)—Ti(J1,J2+1,J3+1)+Ti(J1+1,J2,J3)+

By
Ti(Jl,J2+1,J3)+Ti(Jl,JZ,J3+1)—Ti(J1,J2,J3)]}T—gi—TSNi

Though this scheme has the advantage that the measured
values can be used directly, the simulation user should be
cautioned that considerable memory storage is involved in
its utilization. Differences between the two models will be

discussed further in Chapter 4.
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2.5.4 Four Wheel Braking
To simulate many realistic cases the program allow a different

brake torque at each wheel for a given brake line pressure.

This is effected through modification of the two-dimensional
Rij in eqs. (2.310) through (2.313) and (2.316)
through (2.319). These arrays give data points in "look-up" tables.

arrays BFij and B

For i = 1, the arrays specify values for the brake line pressure.
For i = 2,3 the table contains the corresponding broke line torques
for the right and left wheels, respectively. To return to the APL
simulation, in which the right and left wheels receive the same

braking, the case i = 3 is deleted.
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§2.5.5. Derivation of the Static Suspension Forces

Fig. 2.4 1is a sketch of the vehicle at rest. All of

the state variables are taken to be zero except for the

pitch angle, 6, and the center of gravity height, Z.

Fig 2.4. Free body diagram of the vehicle at rest.

Summing forces in the vertical direction gives
' 1 ! 1 =
FR1 + FR2 + FR3 + FR4 (IM)g (2.394)

Taking moments about the y-axis gives
(Fhy+Fho-M pg)a' = (FhgFh, =M, pe)b’ (2.395)

where
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For a symmetric vehicle,

Solving eqs.

a' = acosf + stinS (2.
b' = bcosb - stine (2.
Fpy = Fpa » Frz = Fpg (2.

(2.394), (2.395) and (2.396) gives

Fﬁl %[Mqu+b'MSg/(a'+b')] (2.

Fiha = #[M pe+a'Mgg/(a'+b')] (2.

Fig. 2.5 is a sketch of front wheel 1. Note that the

modelling of the suspension is such that it can transmit

forces and moments in the x,y,z directions. Ilere the out-

of-plane quantities are not shown and TRl = 0. Summing

forces in the z-direction gives

Fig 2.5.

Free body diagram of front wheel 1.

396)

397)

398)

399)

400)
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FSWF = (b’MSgcose)/(a'+b') (2.401)

Similarly

&
I

swr = (a'Mggcose)/(a'+b') (2.402)
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§ 2.5.6. Derivation of the Pitch Equation

The current simulation contains certain terms involving
wheel inertias and tire forces which are not in the APL
simulation. The occurrence of such terms will be demon-
strated for the simple case of no wheel steer or camber
and no roll. Shown in Fig. 2.6 is a free body diagram of the
sprung mass. Since the out-of-plane quantities do not arise

in the subsequent calculations, they are not shown on the

sketch. Taking moments about the y-axis gives

Sx1°5x2

y3’My4

x3’ x4
Fig. 2.6. Free body diagram of the sprung mass.
. 2
Iyq - T IXZ .
= a(8,+8,) - b(s3+s4) _igl Myi - INgg (2.403)

where the Myi are suspension moments.

Fig. 2.7 is a sketch of the suspension for wheel 1.
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Taking moments about the y-axis through the point P gives,

Figure 2.7. Suspension at wheel 1.

on assuming an inertialess suspension,
Myl + le(zF+61) - TRl = 0 | (2.404)
A free body diagram of wheel 1 is given in Fig. 2.8.
Taking moments about the y-axis through the wheel center

gives
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Figure 2.8. Free body diagram of wheel 1.

Tp1 = IWFw1+RR1(Fxlcose+FZ1sine) (2.405)

Summing forces in the x-direction yields

1 1

F ., - S sing = F M (2.406)

x1 x1 =~ 3 ¥,p8 uF?x1

where agq is the acceleration of the center of gravity of

wheel 1 in the x-~direction.
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Substituting egs. (2.405)and (2.406) into eq. {92_.404) gives

M I ml+RR1(Fxlcose+ Fz

1
1 .
~ (2g+8 ) [F - 5 M p(gsiné+a ;)] (2.407)

Similarly for wheel 2,

M IWFw2+RR2(szcos6+FZ2sine)

y2

1 g
- (zF+62) [sz— 3 MuF(gs1ne+ax2)] (2.408)

The accelerations ayq and a o are given by

T
L] . 2 2 F L] L]
agy = u-vr+wq+2q61—a(q +r-)- -5 r+(zF+61)q (2.409)
a = u-vr+wg+2qé ( 24 2) EE r+(2.+8,)q
x2 q+aq z-a q *r ) r ZF z)q . (2.410)

In the case of an independent suspeénsion we similarly

get
M3 = IWFé3+RR3(Fxscose+FZ3sine) s
- (zg*8)[F o= 5 M (gsine+a_g)]
Moy = IWFé4+RR4(Fx4cose+FZ4sine)
- (2t [F, 4= 5 Myp(esine+a )] (2.412)
a.g = ﬁ-vr+wq+2q53—b(q2+r2)—2§5+(zR+53)d (2.413)
g = G-vr+wq+2q54—b(q2+r2)- §?f+(zR+64)d (2.414)

Substituting eqs. (2.407) through (2.414) into eq.

(2.103) gives

1§ -1r21 = a(8,+5,)-b(85-5,)-IN

y XZ 6s

-1 —RRl(FxlcOSG+FZ Sin6)+(zF+61)FX1

wr¥1 1

(continued)
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1 . 1 - .
- = M - = M —_
5 MuF(zF+61)g81ne 5 kuF[u vr+wq+2q6
T
2 2 F - . .
a(q™+r”) - 5 rH(zprsy)al- Iypug

1

. 1 .
- RRZ(FX2c0s6+F22s1ne)+(zF+62)Fx2— 5 MuF(zF+62)51ne
1 M _(z.+8,)[u-vr+wg+2qd —a(q2+r2)
2 YurF‘ZF %2 ! 2
TF ]

_4 . 6 L
g T+ (Zpt R

. i 1 .
- IWFmB—RRB(FX3c0s6+FZSS1n6)+(ZR+63)FX3— 5 MuR(ZR+63)g51ne
1 r $ 2.2
-5 M R(ZR+53)._u—vr+wq+2q<’53 b(q™+r™)

Sy

r+(zR+63)q] - IWF64+RR4(FX4cose+FZ451ne)

+

(zg*6,)F, 4= % M (2p+6 ) Esing

T
1 . R 2, 2 R =
-5 MuR(zR+64)[u—vr+wq+2q64—b(q +r?) - 5 T

+

(zp+8,)a ] (2.415)

Such analyses lead to slightly different results than
the APL mathematical model. The terms that are different

are indicated in §2.3.1 by the "assumption 07.”
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2.5.7. Suspension Averaging

To improve the accuracy of numerical integration, and to
allow the use of a larger integrdtion time step, the suspension
forces are averaged over the two preceding time steps. Taking
the average removes the higher frequencies present in the sus-

pensions.

The equations used for averaging are:

First Averaging

= 1
S;(t) = F(8;(t)+8,(t-At)) (2.416)

Second Averaging

() = 3(5;(t)+B;(t-at) )

= 308,(£)+28, (t-0t)+5, (t-28t) )  (2.417)
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§2.5.8. Antilock System.

Antilock systems as described in Ref. [2.1] are avail-

able, at the users' choice, in the current simulation. They

are described in detail in §2.3.12.
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CHAPTER THREE
MATHEMATICAL MODEL OF THE DRIVER

§3.1 Introduction. This chapter presents the mathematical

model of the driver that is implemented in the digital
program: IDSFC Driver Module. Several different models

of the driver have been implemented in the Driver Module.
Section 3.2 gives a summary of the equations programmed and
Section 3.3 the nomenclature used. Open loop control of
the vehicle is discussed in Section 3.4.

In Sections 3.5 and 3.6, two basic types of driver
modelling will be discussed and developed. Such models are
an essential ingredient for closed-loop maneuvers, an
important feature of the current simulation. The models
are the preview-predictor type (see Ref. [3.1]) and the
describing-function type (see McRuer et al, Ref.[3.2]).

Preview-predictor models are based on a psychological
process viewpoint. Arbitrary trajectories are considered
and two types of predictor are developed, namely, one using
an algebraic method and another using a three-degree-of-
freedom vehicle model.

The describing function models are based on a system
control viewpoint and were developed for regulatory path
following. 1In the development here, straight-line path

following is treated separately from curved path following.

~107-~
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Driver Module Equations

§3.
§3.

§3.

§3.
§3.
§3.

§3.

§3.

The Driver Module equations are subdivided as follows:

.1. Open Loop Command Table
.2 Preprogrammed Open Loop Maneuvers

.3 Preview - Predictor Equations

§ 3.2.3.1 Ceometric Predictor

§ 3.2.3.2 Three-Degree-of-Freedom Predictor

§ 3.2.3.3 Steering and Speed Control Corrections

§ 3.2.3.4 Obstacle Avoidance

§ 3.2.3.5 Generation of Control Commands When Sampling

Does Not Occur

.4 Describing Function Equations
) Calculating Errors
.6 Curvature Calculation

7 Driver Module - Vehicle Model Interface

.1 Open Loop Command Table

Frae = (t=tori)/(tornci+1)~tori) (3.1)
Ssw = Sswi ¥ (Frac) Csw(i+1) Sswi’ (3.2)
Per, = Prri t (Frac) Prp(i+1) PrLi) (3.3)
TQp = TQp; * (Frgo)(Th(i41) ;) (3.4)

ve = Ve, + (F_, )(VC; 1-VCy) (3.5)

dy = dgy + (Fra)(dgii1y~%5) (3.6)
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§3.2.2 Preprogrammed Open Loop Maneuvers

For the sinusoidal steer, the steering wheel angle is given

by:
P
O,t_itsts

= 4 i -
GSW amp31n[2w(t tsts)le’tstsf-titens

0,t>t_ (3.7)

\
while for the trapezoidal steer:

(O,t<tsts

a  (t-t

mp sts <t<(t ttrs)

)/t t sts rs

rs’ ‘sts—

:(t S)-<—t<(t "'tds)

sts ens

(tens-t)/tds’(tens_tds)it<tens

mp
Ko, t<t (3.8)

ens

For the double trapezoidal steer:

0, t<tsts

<t<(t_, +t__)

amp( sts)/trs sts sts rs

(t )-t

1
trg)St<g(tonst ds

amp’ sts+ ns “sts
a 1 1 _ =
Ssw = amp[ﬁ(tens-tsts)_t]/tds’[Z(tens tsts) ]<t< 7(tenststs

1
—amp[t__(t ts)]/trs’ f(tens_ )<t< (t s tsts

)

+
) tI‘S

ik - -t
(tens tsts)+trs]—<-t<(tens ds)

|
®
o |
[Nl

T (tens_t)/tds’ (tens_tds)it<tens

(3.9)
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For the trapezoidal steer with a sinusoidal perturbation:

(O t t ts
amp(t_tsts)/trs’ tstsi t<(tsts*,+trs)
68w = 4 amp+amp2Sinz (t_tsts—trs)/T2’¢sts+trs)it<tens
amp(tens—t)/tds’ (tens"tds)i t<tens
lO, t>tons (3.10)

All of the above maneuvers can be performed with a trape-

zoidal brakeline pressure given by:

(0’ t<tstb
pmax(t—tstb)/trb ’ tstbit (tstb+trb)
PFL =J Prax’ (tstb+trb)i t<(t nb—tdb)
pmax(tenb—t)/tdb’ (tenb tap)S *<tenb
\O, t>t b (3.11)

A sinusoidal steering sweep without braking is given by:

ro t<tsts

. 2 1
- = +
S = amp31nwsl(t tots) tsts5t<2(tens tsts)

_ampSlnwsl(tens-t)Z: %(tens+tsts)<t<tens

0, t>t . (3.12)

\
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§3.2.3. Preview - Predictor Equations

§3.2.3.1 Geometric Predictor

When a geometric predictor is employed, the predicted

positions and velocities are obtained by repeated use of:

AXi = [uPi_1 cos(wPi_l) - vPi_1 sin(wPi_l)] At (3.
AY; = [uPi_1 sin(yP;_ ;) + VP, 4 cos(wPi_l)] At (3.
sp, = sp,_, +Vax2 + av? (3.
XP, = XP, , + AX; (3.
YP, = YP, ; + AY, (3.
WP, = YP,_, + TP, ; At (3.
uP, = uP, ; + dper At (3.
vP, = VP, , + Gper At (3.
rPi = rPi_1 + fper At (3

§3.2.3.2. Three-Degree-of-Freedom Predictor

When the three-degree-of-freedom predictor is em-
ployed, the predicted positions and velocities are obtained

by integrating the differential equations:

pr = Ypr cos(wpr) = Vor sin(wpr) (3.
?pr = Upr sin(y,.) + V. cos(y,,.) (3.
ipr = Ty (3.
.pr = a_, - [F8; sin(8+6, ,)+FS, sin(§+8, o)1
/MTOT + Vpr rpr (3.

13)

14)

15)

16)

17)

18)

19)

20)

.21)

22)
23)

24)

25)
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pr

vpr = (FS1 cos(6+6toel)+FS2 cos(6+6toel)
+FSS+FS4)/MTOT - upr rpr (3.26)
= {FS1 [xl cos(6+6toe1)+y1 sin(6+6toe1)]+FSZ [x2 X
cos(8+8, o)+, sin(6+6toe2)]+x3 x (3.27)
(FS4+FS,) /1,
T ¢ SIS MO LS R (3.28)
u, = upr - yi'rpr (3.29)
v, = vpr + xi'rpr (3.30)
6, = tan_l(vi/ui) (3.31)
a, = ﬁpr - Vpr rpr (3.32)
a, = Gpr UL T (3.33)
o, = By =8 - 8. . o, 1=1,2 (3.34)
o = 6; i=3,4 (3.35)
FN, = L~ X, 572, CH(X; g © ay) /33 Mpgp/ @#0),1+1,2  (3.36)
FNi = %[g X _ogtay c—(xi_2 c ay)/yi]MTOT/(a+b) (3.37)
i=3,4 (3.38)
§ = 8gynCR
For i such that BT (i-1) Pprn < BTy
TQg = BTy - (BTy; - Pppy) (BTy; = BTy qy)/
(BTy; - BTy j_1y) (3.39)
a,, = TQg/BK . + TQy/DV . (3.40)



-113-

The tire side forces FSi are given by:

If FN.<A2, :

1— 1

_ 2
C,; = A0 +(A1;)(FN;)-(AL;/A2;)(FN,) (3.41)
If FN, >A2,:
c,, = A0, (3.42)
F — (B3.)(FN,)+(B1,)(FN,)2+(B4;)(FN)> (3.43)
maxi i i i i i i :
&y T - (Cai)(ai)/Fmaxi (3.44)
If |a,|<3:
Fs. = F___.[ac@. |5, 1/3)+(@,°/27)] (3.45)

i maxi-"i “i'"i 1 ‘

If |z,|> 3

1
FS. = F . SgNa. . (3.46)
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§ 3.2.3.3. Steering and Speed Control Corrections

A weighted average of the errors is calculated by:

N
pred WT_ __.ERR .
1 aci u22i
ERR = ) (3.47)
acc Npred i=1 ZSPi
Npred
ERR_, = 121 (WTStiDpiKPi) (3.48)

2(a+b)[1+KD(uP> + vP2)]
Kp, = 5 (3.49)
4(SP3)

Npre

Note. SP1 is taken equal to SP2

Using these errors, control commands are generated

by:
Sdes = O = GgtERBgy I(Sdes| = Smax (3.59)
8ccdes qce ~ GacERRacc » qcemin hl accdes = qccmax (3.51)
accdes = %[(umaxj)z_(upj)z]/spj
j=1...N

pred
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= 1/2 N
Wi {(alamax)(ACCLmax)/Kli} , 1= 1...(Npred—1)
= i = 59
Unmaxi Ymax(i-1) @ * Npred (3.23)
The commands are then stored in a command table gene-
rated by:
i = [100(t - tl - 0.1)]* (3.53)
< =
If tl tln’ tl tln where
tln = 0.01[100(t - 0.1)]* (3.54)
i = e 55
i [100(t + T ty) + 1]* (3.9593)
For j = 1’2""iT do equations (3.55) and
(3.56)
81 = S(143) (3. 56)
aCCJ acc(i+j) (3.57)
kK = 0O (3.58)
For j = iT + 1, iT + 2,..., 300 do equations (3.58) through
(3.66)
ep = 1 - exp {(t + Ty - 0.0l(j—l)/Tm} (3.59)
Gj = GiT + (Gdes - GiT) ep (3.60)
If (Gj - G(j—l)) > 0.016max
85 = 841yt 0.018 o (3.61)
If (6, . - 6.)>0.018
( (3j-1) J) max
65 = Sj.1y - 0.018 (3.62)
Ace(j+k) acciT R Py acciT)eF
(3.63)
If (acc(j+k) . accsw)(acc(j+k—l) B accsw) =0

*Where [ ] means truncate to the nearest smallest integer.
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then do equations (3.63)-(3.66); otherwise return to

eqn. (3.58).
L = [1001ab] (3.64)
k = k + £ (3.65)
a . = a .
cc(j+k) ce(j+k-2) (3.66)
acc(J+k-2-1+m) = fcesw ™ T 1,2,...% (3.67)
§ 3.2.3.4. Obstacle Avoidance
The distance to the obstacle from the point of first
sighting is determined by:
- _ 2 2,1/2
Dyjew = {(Xper XRPi) + (Yper B YRPi) }
for 1 = I5p (3.68)
The time increment between predicted points becomes
uper
't = S (3-69)
ppt Dysew (Npred - D

The desired path is moved to the right or left by a

distance Cob'
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§ 3.2.3.5. Generation of Control Commands when Sampling

Does Not Occur.

The command table previously generated is used together

with the following equations to generate contrbl commands:

is= [100(t—t1)] + 1 (3.70)
£ = lOO(t—tl) +1 -1 (3.71)
§ = COMDli + £ (COMDl(i +1) COMDli) (3.72)
a8, = COMD21 + g(COMDZ(i + 1) COMDZi) (3.73)
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§ 3.2.4. Describing Function Equations

For the straight line cross-over model, the control

commands are calculated by

ey = =Y (3.74)
e. = -usin¥ - vcosY (3.75)
Y
.o (3. 77
ew r )
_ _ (3.73
€u Vies ~ Y )
_ . . . . 3.79)
8 swrow Gyey *+ Gyey + Gye, + Gyey (
- Ge (3.80)
ccnew uu

For the general cross-over model, the control commands

are calculated by

_ 2
= (a+b)[1+(KD)u ](ew+r)/u(GR)+GYeY+G?e?+GweW+Gwew (3.81)

qccnew Gueu (3.82)

8
Swnew

The control commands given above are delayed by the

driver's neuromuscular response time
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§ 3.2.5. Error Calculation

The differences between the predicted and desired
paths, i.e., the errors, arc calculated in the previcw

predictor model by

oy = 2 . 2.% 3. 83)
Dpj [(xpj Xine) +(ij Yoo ) <] (
i 2 2
A" S X ESEX) T + (Y5 = Yy) (3. 84)
X, = (YooY
int PERP™ 1) (Y,-Y,)(X,-X,) (3. 85)
2
+ ¥, (Y.-Y,) 2 2
1771727+ Xpppp (X4-X,)%1/d,,
Y. = h 2
Ll [(Xpprp=%X1) (X=X (¥1-Y5) + Y (X,-X,) (3. 86)

2 2
* Ypprp(Y1-Y5)71/4,,

- o -1 i (3. 87)
Q = sgn(Yint YPJ)cos [(Xint xpj)/Dpj]

where sgn stand for '"sign of."

P., D. = -D
If 2 > 4Py, D, Pj (3.88)

+ (X, =X (L -U )/ (X _Xq)
RPI,,. int™%1 yaprz RPT,. /%

(3.89)

ERR .. = (upj)z + (vpj)2 - (u, )2 (3. 90)

des
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For the general cross-over model the errors are given

K

+

-5

V]

(Y. .-Y

int

(YRPIO—

Y

€y

-D

—usin(¥-y 4.¢)

pl

(Ypp;~Yrpi)/ (Xgpj-

X

= veos(V-¥4.)

Vaes™ Y

V]« -

u

des

- 1V

/kupj)z + (ij)z

Kk, * (ko= )[(X, ,-X )
1 2 1 int RPIPT

2

2.3
Y717/ (X - X
RPI o RPI,” “RPI

RPI

PT

)21

3

+

PT

)

RPi)

2

(3.

(3.

(3.

(3.

(3.

(3.

(3.

21)

92)

93)

94)

95)

96)

97)

(3.98)



§ 3.2.6.

-121-

Curvature Calculation

Curvature « of a circle passing through the specified

points (XlYl)’ (XZYZ)’ (X3Y3) is given by:

1 2
d2 = X, - X3
d3 =Y, - Y2
d4 =Y, - Y3
_ 2 2 2
d5 =X - X2 + Y1 -
_ 2 2 2
d6 = X - X3 + Y1 -
A = 2(d1d4 - d2d3)
d7 = (d5d4 - d6d3)/A
d8 = (d5d2 - d6d1)/A

<= [(Xymd)? 4 (v,mag)?) 7

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3. 108)
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§ 3.2.7. Driver Module - Vehicle Model Interface

Quantities needed by the preview - predictor methods

are given by:

MTOT = MS + MuR + MuF (3.109)
= 8
FRSl 5 [MuF+MSb/(a+b)] (3.110)
= g
FRgo Z[MuR+MSa/(a+b)] (3.111)
RR, = R, - (FRSl)/(KTi), i=1,2 (3.112)
RR; =R, - (FRSz)/(KTi), i=3,4 (3.113)
If RR; < Rppyyo RR; = Bpryi: i=1...4 (3.114)
If RR; >R, , RR; = R, i=1...4 (3.115)
4 4
BK,op = - [(Mpop) .Z RRi]/(4_é Agi) (3.116)
i=1 i=1
DVoon = MTOT{(l—AD) [(l/RRl)+(1/RR2)]+AD[(1/RRB)+(1/RR4)]}
(3.117)
- 118
GR (a /2N [(1/Ap ) + (1/Ap)] (3.118)
1 ) )
= = = = 119
BTij 2(BFij + BRij) , i=1...2, j=1...11 (3. )
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Bcemax (alomax)(TQDmax){(]'AD)](I/RR1)+(1/RR2)]
+ Ap[(L/RR)+(1/RR,) T} /My, (3.120)
2 2
fcemin = T (a8log;p)i i£1 (Pp1i) (FRg))+(Pgy ) (FRg)
4
* (Pssi)(FR31)3]SN1+123[(Psli)(FRsz)
2 3
* (P ) (FRgp) ™+ (Ppgy ) (FRgo) V1SN, } /My, (3.121)
2 2 3
ACCmax = (2 [(Bgy)(FRg))+(Byy) (FRgy ) “+(Byy ) (FRg ) 1SN,
4 i 5
* L LBy ) (FRg,)+(By ;) (FRgy) (B, 5 ) (FRg,) I8N, 1 /My,

i=3

(3.122)

The three-degree-of-freedom predictor also requires:

1, = IZ+[a2+(TF)2/4]MuF+b2MuR (3.123)

c = {—z(0)MS+%[MuF(RR1+RR2)+MuR(RR3+RR4)]}/MTOT (3.124)
_ om0 j

Stoe1 = i—ﬁ.jéo Dypds1 ¥ Sstat1 (3.125)
2 ;

6toez = 1% jéo Pjrds2 * Sstat2 (3.126)
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The initial acceleration is calculated from:

I Pero S 10 agg0 = (TQp)/(DV__ ) (3.127)
Otherwise, for j such that BTl(j-l) < PFLO < Ble ,
T = Blyi1y *+ (P - BT1(5-1))(BTy; - BTy o 1)/
(3.128)
(BT1p = BTy (4_1y)
accO = (TQB)/(BKcon) (3.129)

The steering angle command outputed by the preview

predictor models are converted to steering wheel angles

by :
Ay = My, + My, - TIpw)/Kgpq (3.130)
Ay = (Mpy + M, - T o) /Kgp o (3.131)
_ NG(A +A,) 2, %s1181 | Kgrohs
‘SSw = 6/GR - 1 1 T N.K (T K —a, ) (3.132)
a (g ) G"SC L1 L2
P a1 L2
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For all of the closed-loop driver models, acceleration
commands are converted to brakeline pressure and drive torque

commands by:

TQB = a,, BKcon (3.133)

For i such that BTZ(i—l) < TQB < BTZi’

FPFL T BTy~ (BTy;-TQg) (BTy;-BTy (5 44)/
(BT,; - BT, 1)) (3.134)
™, = 0 (3.135)
Ifa__ >0
Pry = O (3.136)

TQD = 3 DVcon (3.137)
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§ 3.3 Driver Module Nomenclature

Some of the symbols used in the driver module equations

have already been defined in the vehicle model nomenclature,

§ 2.4. Additional symbols used in the driver module are:

Symbol

ACCLmax

AO,, AL, A2,

a ..,a
cemin’ “cemax

a
ccnew

alo
“““max

alo .
“““min

a
mp

amp2

Definitions

Maximum possible lateral acceleration
of the vehicle.

Coefficients in a quadratic approxi-
mation to the cornering stiffness versus
normal tire force relationship.

Variables used in §3.2.7.

Current value of acceleration command.
Desired value of the acceleration command.
Acceleration command for time t..

J

Minimum and maximum acceleration, respec-
tively, driver will utilize.

Value of the acceleration command for t+TL,
where Ty, is the driver response time lag.

Initial value of acceleration.

Acceleration level at which acceleration/
braking switch-over occurs

Maximum lateral acceleration driver will
utilize.

Fraction of vehicle acceleration capability
which the driver will use.

Fraction of vehicle dcecceleration capability
which the driver will use.

Maximum steering wheel angular displacement.

Amplitude of sinusoidal steering pertur-
bation.

Vehicle acceleration components in the
X and y directions, respectively.



ngbol
Fij'BRij

BK
con

BT, .
i)

Bl.,B3,,B4,
1 1 1

ai

Cob

COMD., . , COMD

1i 21

D_.
pi

D_.
view

DV
con

d,,d,,d,,d,,d

1°72°73°74°75,

d,,d

7:dg
dy,dgy
dy g
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Definition

Coefficients in "look-up'" tables for
brakeline pressures versus torques for
front and rear wheels, respectively.

Conversion factor between brake torque
and vehicle decceleration.

Array giving brakeline pressures versus
torques.

Coefficients in a cubic approximation to
the relationship between the maximum tire
side force and the tire normal force.

Cornering stiffness.

Distance by which desired path must be
shifted to avoid an obstacle.

Array containing the desired steering and
acceleration commands at 0.01 second
intervals.

Height of the center of mass of the entire
vehicle above the ground level.

Coefficients in a fifth degree polynomial
fitted to wheel toe angles versus sus-
pension deflections.

Perpendicular distance from predicted
point to the nearest point on the road
path.

Distance from a predicted point to the
desired path.

Distance from an obstacle to its point
of first sighting.

Drive torque - acceleration conversion
factor.

Variables used in §3.2.6.

Variables in §3.2.1.

The distance between the points (Xl,Yl)
and (XO’YZ)'



Szmbol

ERRacc

ERRSt

ERRuZi
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Definition

Normalized accelerstion error.

Normalized position error for steering
correction.

Difference between squares of actual and
desired forward velocities.

Variable used in §3.2.3.3.
Heading angle error.
Forward velocity error.
Lateral position error.

Normal force acting on tire i (FR in
the vehicle model)

Variable used in §3.2.1.

Static radial tire force for the front and
rear wheels, respectively.

Tire side force at wheel i (F in the
vehicle model).

Multiplying factor for velocity errors.
Heading angle gain.

Heading rate gain.

Multiplying factor for position errors.
Forward velocity gain.

Overall effectlve steering ratio
(GR = 6/6

Lateral position gain.
Lateral velocity gain.

Index of road point at which obstacle is
located.

Index of road map point closest to a
predicted point.

Index of road map point which locates other
end of road segment on which lies the point
closest to the vehicle.



Symbol

22z
igp
KD

KPi

Mt ot

Npred

P P

Pg1i:Pp2i’Pr3y

SP,
i

Qg
TQ,
TQp4

db
ds
enb

ens
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Definition

Moment of inertia of the entire vehicle
about the z-axis.

An index giving upper limit of elements
of COMD table to be discarded.

Understeer/oversteer coefficient.
Steering error normalizing factor.

Total mass of the vehicle (IM in the
vehicle model).

Number of predicted points.

Coefficients of curves fitted to the peak
braking friction coefficient at wheel i.

Value of the brakeline pressure at the
time of the command "i', tOLi‘

Initial value of the brakeline pressure.
Maximum value of the brakeline pressure.
Perceived yaw rate.

Predicted yaw rate at point i.

Predicted yaw rate in the three-degree-
of-freedom predictor.

Distance from current position along
predicted path.

Distance from present position to predicted
point i.

Effective brake torque.
Drive torque.

Value of the drive torque at the time of
thecmmmnd'ﬁ“,tOLf

Drop-off time for trapezoidal braking.
Drop-off time for trapezoidal steer.
Time at which braking input is terminated.

Time at which steering inputs are
terminated.
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Symbol Definition

t Sampling time interval.

pps p g

tppt Predicted point time interval.

trb Rise time for trapezoidal braking.

trs Rise time for trapezoidal steer.

tStb Time at which braking input is initiated.

tsts Time at which steering inputs are initiated.

tOLl’tOLZ Starting and ending times, respectively,
of an open-loop control period.

tl Time corresponding to the first entry in
the command table COMD.

t1 New value of t,, the time corresponding

n to the first e%try in the command table

COMD.

URPj Desired forward velocity at point j.

UP. Predicted forward velocity at the

1 point i.

Yies Desired forward velocity.

u . Vector of maximum allowable velocities at

maxJ the predicted path points.

u Perceived forward velocity.

per

u Predicted forward velocity in the three-

pr degree-of-freedom predictor.

|$| Total vehicle speed.

Vd Desired forward velocity in the straight

€s line describing function model.
vC Commanded velocity.
VC. Commanded velocity at the time of command
1 nin t .
> OLi
vPi Predicted lateral velocity at the point i.
v Perceived lateral velocity.

per



w

w

pr
T
ac

Tst

i

i

XPERP

RPi

Xp

int

Xper

X
pr

(X,,Y;), (X5, Yy),
(X, T

X

Y

<

1!

i

PERP

RPi

Yint

Y
per

Y
pr

1)

2

2

Smeol
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Definition

Predicted lateral velocity in the three-
degree-of-freedom predictor.

Weighting factors for velocity errors.
Weighting factors for position errors.

X-coordinate of the point through which
the perpendicular is drawn.

X-coordinate of the road point 1i.
Predicted value of X at the point 1i.

X coordinate of the closest point on the
road path.

Perceived value of X.

Predicted value of X in the three-degree-
of-freedom predictor.

X-coordinates of end points of a road segment
which is being checked for perpendicular
intersection point.

Coordinates of three specified points
through which a circle must be passed.

x-coordinates of wheel locations in vehicle
axis system.

Y-coordinate of the point through which
the perpendicular is drawn.

Y-coordinate of the road point 1i.

Predicted value of Y at the point 1i.

Y coordinate of the closest point on the
road path.

Perceived value of Y.

Predicted value of Y in the three-degree-
of-freedom predictor.

Y-coordinates of end points of a road
segment which is being checked for per-
pendicular intersection point.

y-coordinates ol wheel locations in vehicle
axis system.



Symbol

des
max

Swi

6Swnew

6toe1,toe2

K

K11

Kl,K'z
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Definition

Slip angle at wheel 1i.
Normalized slip angle at wheel 1i.
Variable used in §3.2.6.

Average steering angle of front wheels
in driver models.

Desired front wheel steer angle.
Maximum allowable front wheel angle.

Value of the angular displacement of the
steering wheel at the time of the command

1, tops-

Value of the steering wheel command for
time t + T_ .

L
Toe-in angles of the front wheels.
Desired path curvature.
Curvature of a circle passing through a
predicted path point and the two
neighboring points.

Path curvatures at the end points of the
closest road-map segment.

Variable used in §3.2.3.5.

Time lag for acceleration/braking
switchover.

Time lag in describing function driver
models.

Driver time lag in the preview-predictor
model.

Exponential rise time for driver response.
Period of sinusoidal steer.

Period of sinusoidal steering perturba-
tion to the trapezoidal steer.

Heading (yaw) angle.

Tangent angle to the desired path at the
closest point on the road path.
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Definition

Value of the heading angle at the pre-
dicted point i.

Predicted value of the heading angle in
the three-degree-of-freedom predictor.

Angle from line between predicted point
and the point of perpendicular inter-
section to the X-axis.

Circular frequency of the sinusoidal sweep
at time t = 1.0 sec.
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§3.4 Open Loop Vehicle Control

The Driver Module can be used for open loop control of
the vehicle. When in this mode, the user desired maneuver is
input to the vehicle as either:

1. A preprogrammed maneuver

2. A table of commands

3. A user supplied subroutine

Five types of preprogrammed maneuvers have been supplied.
These are:

1. Sinusoidal steer

2 Trapezoidal steer

3. Double trapezoidal steer

4 Trapezoidal steer with a sinusoidal perturbation

5. Sinusoidal sweep steer

With maneuvers one through four, a trapezoidal braking
command has also been implemented. See Section 4.3. of the
User's Guide (Vol. 4 in this series) for further details.

Section 3.2.2 contains the equations for each of these
maneuvers. By correctly choosing the values of the parameters
in these equations, a very large number of maneuvers can be
simulated. Section 4.4 of the User's Guide discusses choosing
these parameters to simulate the Vehicle Handling Test
Procedures.

For greater flexibility, the user may specify an open loop
command table. Here the user enters values of the control
variables at specified times. For times other than those

specified, linear interpolation between the data points is
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used. Section 3.2.1 contains the relevant equations. The
control variables to be specified are:

1. Steering wheel angle and one of:

2. Brake line pressure

3. Drive torque

4. Commanded vehicle velocity
Space has been left in the table for a fifth, user defined
control input. Section 4.2 of the User's Guide discusses the
command table in greater detail.

Finally, the user may specify the control inputs by
means of a user written subroutine. See section 4.5 of the

User's Guide for details and an example.
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§3.5. Preview-Predictor Models.

§3.5.1. Over View:

The preview--predictor models of closed-loop human driver
behavior are based, to a certain extent, on a psychological
process framework. In these models it is assumed that the
driver evaluates, or samples, the status of the vehicle at
regular time intervals. Based on this evaluation, at each
sample time he predicts what the future path and speed of
the vehicle will be, and compares the predicted quantities
to desired ones. The difference (zerrors) between the pre-
dicted path and velocities and the desired quantities serve
as the basis for changes in control inputs to the vehicle.

This process of sampling, predicting, comparing and
correcting at discrete intervals has been implemented by two
.-related algorithms, which differ mainly in the techniques
used to predict. Two control commands are involved, namely
the average front-wheel steering angle § and the forward
acceleration 20c (which may be positive or negative). These
variables were chosen instead of the actual simulation con-
trol variables, namely, the steering wheel angle, the drive
torque and the brakeline pressure, since (i) it was felt
that the human driver's response is more related to these
quantities, i.e., a driver is interested in the rate the
vehicle is slowing down and not in the brakeline pressurc
and (ii) the DRIVER MODULE would depend less on the specific

vehicle model used.
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§3.5.2. Driver Model Flow.

When using the preview-predictor driver model, the
Driver Module has two distinct modes of operation. These
are the driver sampling mode and the command matrix mode.

In the driver sampling mode, the driver scans his environ-
ment and uses this information to generate a series of
steering and braking commands which are stored at regular
time intervals in the command matrix. In the command matrix
mode, steering and braking commands for the current time are
generated, using linear interpolation, if necessary. During
the majority of the calls to the Driver Module the command
matrix mode is used. However, the driver sampling mode will
be used if a time greater than the sampling interval t

pps
has elapsed since the driver sampling mode was last used.

§3.5.2.1. Driver Sampling Mode.

When the driver sampling mode is used the current values
of X, Y, v, u, v, r and their time derivatives, which give
the overall motion of the vehicle, are passed from the vehicle
simulation to the Driver Module. The simulation allows them
to be modified, (if desired by the user) by normally distrib-
uted random errors to simulate human perception errors. The
perceived quantities (as opposed to actual values) are denoted
by Xper’ etc.. Based on these perceived quantities and a
hypothetical set of future steering and acceleration commands,

a prediction is made of the vehicle trajectory and velocity

into the future, where

for a period of time, t ,
pred
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t = (N

pred Dt

(3.138)

pred ~’ “ppt

A choice has to be made for the value of the interval between

predicted points t In his work, Kroll used a prediction

ppt’
distance but it is felt that the distance a driver predicts
ahead will vary with vehicle speed and so prediction times

have been used here instead. The values chosen for the para-

8 and t = 0.2727

meters in the sample runs were Npred = ppt

secs. At a velocity of 50 mph. this yields Kroll's predic-
tion distance of 240 inches. These values can be changed
by the user.

The predicted path shown in Fig. 3.1 is calculated by
one of two methods. These methods are quite different, one
involving a simple algebraic technique and the other being
a three degree of freedom vehicle model involving the inte-
gration of differential equations.

Control commands are generated by comparing this pre-
dicted path with a desired path -- the ideal (but usually
unrealizable) path along which the driver would like to
guide the vehicle. This desired path is represented in the
Driver Module as a series of line segments. These segments
are specified in a user-supplied '"road map table" consisting
of a sequence of points at the segment endpoints and the
desired velocities at these points. The desired path and
velocity are then defined by linear interpolation between
the values of these points. For obstacle avoidance maneuvers,

its desired path may be modified. See §3.5.7.
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predicted path

predicted point
at time t+t
ppt

predicted vehicle

position at time

t +(Npred-l)tppt
=t +t

pred’

current vehicle
position

Fig 3.1. The predicted path of the vehicle
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An "error" is calculated at each of the Npred points
as the difference between the predicted path and velocities
and the corresponding desired quantities. These errors are
then used to generate control commands which bring the
vehicle back towards the desired path and velocity.

The control commands generated are not, in general,
the same as the ones in the command matrix. Changes in the
control commands cannot be executed immediately because of
the physical limitations of the human driver. To simulate
the drivers physical response, the commands are operated on
by a '"neuro-muscular filter". The modified control commands
are then stored in the command matrix and control is passed

to the command matrix mode.

§3.5.2.2. Command Matrix Mode.

When the simulation is in the command matrix mode, the
commands generated are passed to the vehicle simulation through
an interface routine which converts them to steering wheel
angle, drive torque and brakeline pressure.

The above items will now be discussed in more quantita-

tive detail.

§3.5.3. Path and Velocity Prediction.

Two different methods for predicting the path and velo-
city of the vehicle are available in the Driver Module
They are an algebraic or geometric predictor and a 3 d.o.f.
vehicle model, which involves integration of a set of dif-

ferential equations. The algebraic predictor operates only
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on the perceived vehicle kinematics at the time the sampling
occurs, whereas the 3 d.o.f. predictor takes into accouht the
drivers intended control inputs during the upcoming predic-

tion period t The algebraic predictor is considerably

pred’
less complex, and therefore less expensive to run. The path
and velocity predicted by the 3 d.o.f. predictor is more ac-
curate, especially during periods of rapid change of control
inputs.
It should be noted that Kroll, in his work with this

sort of model, used an even simpler predictor which con-
structed a quadratic path with constant lateral acceleration

given by

ay = 6|V|2/[(a+b)(1+KD|v|2)]

where & is the average front wheel steer angle, |$l is the
vehicle speed, a and b are distances from the c.g. to the
front and rear of the vehicle, respectively, and KD is the
understeer/oversteer coefficient. This allowed him to use
a very efficient method for computing desired changes in
control commands. However the method was found here to be-
come inaccurate for maneuvers involving large lateral
accelerations.

The predicted quantities of interest to the driver are
position (XP, YP) and forward velocity uP. The predicted

quantities during the prediction period t q are given by,

pre
in principle,
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t+At

dXp
Xoer(t) + J S at (3.139)

XP(t+at)

t
t+at

dYpP
Yper(t) + J gt dt (3.140)

YP(t+At)

t
t+at

¢ubP
uper(t) + J TTE'dt (3.141)

t

uP(t+ t)

where "per" stands for perceived and 0<At<t Two methods

pred’

of calculation will now be discussed.

Algebraic Predictor.

In this model, predictions are based solely on the per-
ceived quantities at the beginning of the sampling interval.
A simple step-wise integration technique is used, the step
size being At = tppt so that the only values generated are
at the Npred points on the predicted path (these values are
then stored for use later in computations of the "errors").
In the process, the following assumptions are made:

1) During the entire integration interval, the derivatives

V, UP, VP, TP, remain constant at their initially perceived

u etc.
per’ ¢

values, so that uP
2) Since roll and pitch angles are not among the perceived
quantities in this model, it is assumed that yP = rP,

iP = rP.
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With these assumptions, predicted state increments are cal-

culated from:

' AX = XP(t+tppt) - Xep(t) = Xp(t)tppt (3.142)
AY = YP(t+t 1) - Voer(t) = s‘rp(t)tppt (3.143)

AY = wP(t+tppt) = Vper(t) = i-per(t)tppt (3.144)

Au = uP(t+tppt) = Uper(t) = ﬁper(t)tppt (3.145)

AV = VP(tHt ) - Vper(t) = x}per(t)tppt (3.146)

Ar = r(tet ) - T(t) = fper(t)tppt (3.147)

The length SP of the line segment joining the initial point

to the predicted point is given by

A
ASP = /Ax® + AY (3.148)

The inertial quantities XP and ¥YP are related to the compo-

nents with respect to body axes, uP and vP (see Fig. 3.2) by

XP = uP cosyP - vP sinyP = uper coswper - vper s1nlpper
(3.149)

L = Iy + = .

YP uP sinyP vP cosyP uper s1nwper + vper coswper
(3.150)

Equations (3.142), (3.143), (3.144) and (3.150) are used to
calculate X and Y for the first predicted pointi. The incre-

ments for an arbitrary increment mt where the integer m

ppt’
ranges between 1 and (Npred-l), are given by



144~

yP

YP

Fig 3.2 Vehicle kinematics at time t + t

AX = XP(t+mtppt) - XP[t+(m—1)tppt]
= {uP[t+(m—1)tppL] cosypP[t+(m=-1)
- vP[t+(m—l)Lppt] singP[t+(m-1)t

AY = YP(t+mtppt) - YP[t+(m—1)tppt]

{uP[t+(m—1)tppt] sinypP t+(m-1)t

+ uP[t+(m—1)tppt] cosyP t+(m-1)t

pps

L.

ppt

ppt

ppt

ppt]

11t

]

]t

 adD N

ppt
(3.151)

ppt
(3.152)
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The increments Ay, Au, Av and Ar are given by egs. (3.144),
(3.145), (3.146) and (3.147) as before.

Three-Degree-of-Freedom Predictor.

In the 3 d.o.f. predictor, the predicted path and velo-
city are generated by a 3 d.o.f. vehicle model. The perceived
vehicle kinematics at the sampling time are used as initial
conditions for the differential equations and the control
commands § and 3. which had been stored in the command matrix
at the previous sampling time are used as control inputs.

The integration time step was chosen as 0.0l seconds.

The predicted kinematics of the model are stored in a "pre-

dicted kinematics matrix" at intervals of t seconds, cor-

ppt

responding to the (N -1) points on the predicted path.

pred
The main features of the model are:

(i) The degrees of freedom are motions in the X and Y direc-

tions and rotations y about the Z-axis.

(ii) The normal forces acting at the wheels are determined

by using the equations of motion at a previous time step and

the assumptions that the vehicle is symmetric about its x-axis

and that side-to-side normal force differences on the front

and rear axles are proportional to the static weight distribu-

tion between the two axles.

(1ii) The acceleration-control command acc is interpreted as

a force per unit mass applied along the vehicle x-axis. This

seems a reasonable model for acceleration with rear-wheel

drive and front-wheel drive and braking for small steering

angles. It is less accurate for braking and front wheel drive

acceleration at large steering angles.
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(iv) The tire side forces are calculated by means of a
simplified Calspan model in which there is only dependence on
normal force and slip angle.

The equations describing the model have been given in

§3.2.3.2.

§3.5.4. Error Measures and Control Commands.

Given the desired path and velocity (in the form of a
"predicted kinematics matrix'), the driver must compute correc-
tions to the control variables ¢ and 200 This is done as
follows:

(1) The perpendicular distance Dpi to the desired path is
computed for each predicted path point. Also, the differences

ERR in the squares of the predicted and desired velocity at

u2i
the points of perpendicular intersection are calculated (see
Fig. 3.3). Further discussion will be given in §3.7.

(ii) The 'desired" steering and acceleration commands to be
fed to the vehicle model for future times are computed by the

following equations (the "desired'" commands cannot actually be

realized, due to neuromuscular lags):

8 = 4 - GS

des now ERR_, (3.153)

t

2ccdes | %ccnow G cERR, e (3.154)



PATH

|

DESIRED —l ﬂ—__.o
T~

|

DESTRED VELOCITY
CQPUTED AT POINTS QF
PERPEl CULAR INTERSECTION

Fig. 3.3. Illustration of Preview-Predictor Concept
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N

pred
ERR = ¢ (WT_,.)(KP,)D_ .
st =1 stit o itel (3.155)
bred
ERR_ . = 151 (WTaci)(ERRui)/(ZNpredSPi) (3.156)
Kp, = 2Na b [1+(KD)(uP? + VP?)]/SP? (3.157)
pred 1 i i

where the suffix '"'now" denotes current values, GSt is a gain,

for the average front-wheel steering angle, Gac is a gain for

acceleration and WTst and WTaci are weighting errors for

i

position and velocity, respectively. Note that in the simu-

lation SP1 is taken to be equal to SP2. Moreover, limits
were set on the acceptable values of § and a , i.e.
des ccdes
184es| £ Smax (3.158)
&cemin = accdes = accmax (3.159)

The above equations are generalizations of ones given by
Kroll (Ref. 3.1). These equations were developed to minimize
the weighted sum of the errors.

The values of the parameters used in the sample runs are
these given by Kroll. However this is an area that the
authors feel requires considerably more work. To validate
the current modeling, the parameters should be determined
from actual tests. Tests should also be made as to whether
the parameter are maneuver dependent or not. Finally, exten-

sive sensitivity studies should be made.
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§3.5.5. Neuromuscular Filtering.

To simulate the effects of a human driver's physiologi-
cal limitations the desired control commands are modified by
a neuromuscular filter before being stored in the command
matrix. The neuromuscular filter consists of muscular lags
and an exponential rise time. As aids in understanding the
process, the following are defined:

t = The time at which the driver sampling mode was

now
called by the vehicle model.

tcm = The time used in the command matrix operations,
measured from t - tem 2 thow:
G(tcm), acc(tcm) = Contents of the command matrix
after updating at tnow'
8 a = Contents of command matrix before
old, “ccold

updating at tnow'

The command matrix is set up by the following equations,

considering § first:

= 0 = K
'm ' "Lpp :
6(tcm) = 6des ’ tcmio (3- 160)
'rm = , 'erp -7é 0
S (t ) t <T
old" "em”’’
s5(t_ ) ={ cm Lpp (3.161)
cm 8 ,t >
des’ ‘cm— L,pp
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s(t ) =:{601d(tcm)’ tem"Lpp
cm
Sqes * (Gold_ades)exp[_(tcm—TLpp)/Tm] (3.162)

A constraint on the maximum permissible value of § is

also imposed. If

|6(tcm+At) - G(tcm)I/At>6maX (3.163)
then
G(tcm) + (At)amax, §>0
S(t__+at) =
S s(t__) - (At)é §<0
cm max’ (3.164)
émax is a user specified parameter. In the current simulation

a value of the maximum steering wheel rate GSWmax of 11
rad/sec is used, and the program then calculates from this a
value of émax' The value of At is fixed at 0.01 sec.

For 2, the equations are:

Tm = 0, TLpp = 0
acc(tcm) = Zccdes’ tcmzo (3.165)
= T
Ta 0, Lpp # O

: + d
{accold(tcm)’ tcm<TLpp JTab

a (t_ ) = .
8.cdes’ Fem>TLpp T JTab (3.166)

where j = 0 if

~0.01) - accsw][accdes B accsw]>O (3.167)

(

[aCCUld TLpp

and j = 1 otherwise.
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T # 0, TLpp # Q.

ccold(tcm)’ tcm<TLpp T iTap

(=

fccdes T (accold-accdes)exp[_(tcm_TLpp-KTab)/Tm]

for tcmitLpp + JTab and provided

) =<. (3.168)

tcm<tsw OF tcm>tsw * Tab

for t + JTab and

a >T
cesw’ cm— Lpp

t

<t <t + T
L SW— cm— sw

ab

where tsw are times for which

fa_ (t ) - a lla (tcm—0.0l) - a

cec' “cm ccesw’ '%ee 1<0 (3.169)

cCcsw
k i1s incremented by 1 each time equation (3.169) occurs and
J is as in (3.167). Equations (3.167) through (3.169) simu-

late an increase in the driver's time lag 1 by an amount

Lpp

Tab each time the acceleration accsw 1s crossed. This cor-
responds to a foot movement between the throttle and brake

pedal. Both accsw and Tab are user specified. Zero values

are used in the current simulation.
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§3.5.6. Command Matrix

The command matrix contains the stored values of the
steering and acceleration commands as functions of time, the
storing interval consisting of 3 sec. after the most recent
sampling time. The values are stored in tabular form with a
0.01 sec. time interval between entries. The matrix is updated
at each sampling time so that the vehicle simulation actually
only needs entries from the first tpps seconds of the table.

However the 3 d.o.f. predictor needs access to the intended

control commands for the next t sec. Hence the command

pred
matrix is made large enough to store this information. When
the vehicle simulation requests steering and accelerétion

commands, these are obtained from the command matrix by linear

interpolation between the stored values.

§3.5.7. Obstacle Avoidance.

The general purpose Driver Module contains an obstacle
avoidance, closed-loop maneuver. Since the strategy involved
is an area of current research and has not been tested as yet,
the maneuver should be regarded as being in the tentative
stage.

The maneuver is as follows: An obstacle is located at
a user specified road point in the road map, which the driver
first sees when the vehicle reaches another user specified point.
To avoid the obstacle, the vehicle must shift its center
laterally a user specified distance. The user has the following
choice of strategies, which are determined by the values of

an integer variable named IOBMOD:
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IOBMOD = 1. The vehicle attempts to pass the obstacle
on the right and maintain a constant speed.

IOBMOD = 2. The vehicle attempts to pass the obstacle
on the left and maintain a constant speed.

IOBMOD = 3. The vehicle attempts to pass the obstacle
on the right and brakes.

IOBMOD = 4. The vehicle attempts to pass the obstacle

on the left and brakes.
Notes. (i) IOBMOD = O (which is the default value)
removes the obstacle from the simulation.

(ii) The obstacle avoidance maneuver can only

be exercised in this simulation by using

the preview-predictor model of driving

behavior (with either a geometric or 3
d.c.f. integrator as a predictor). Further,
if mixed-mode control is used, the driver should operate
in closed-loop control near the obstacle. The computer
programs handles obstacle avoidance as follows:

When the obstacle comeswithin the driver view, the
desired path is shifted to the left or right, depending on the
user specified strategy, by the user specified obstacle width.
If, in addition, the user has specified that braking is to
occur, the desired velocity is reduced to =zero.

To guarantee that the obstacle avoidance action is taken
before the obstacle is reached, the driver views no further than

the obstacle. The prediction time, is reduced to

tpred’

accomplish this.
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§3.5.8. Driver Module - Vehicle Simulation Interface.

The Driver Module was designed to be applicable to any
digital vehicle model; consequently some provision must be
made for putting the control commands in a form which can be
used by the particular vehicle model. This is performed by an
interface subroutine which must be supplied by the user for
vehicle models other than the University of Michigan IDSFC
simulation. The interface routine used with the IDSFC sim-
ulation will now be described.

The steering command & must be converted to a steering
wheel angle GSW' This is done by approximating the vehicle

model steering equations as follows:

A = My 4 My - TTL /Koo (3.170)
Ay = (Mg, + M5 - TIg)/Kgo (3.171)
N.(A,+A,) a K A K A
S, = 6/GR - A ) p sti”1 |, stz
2 Al + Al ) NeKsc Ao Aro
L1 L2 (3.172)

The acceleration/braking command 2. must be converted to

a drive torque or brake line pressure. This is done as follows:

Case 1. Closed loop control of throttle and brake pedal.

dOUTZ = 0 (3.173)
a,e < 0 TQB = (acc)(BKcon) (3.174)
dOUTl linear interpolation from the brake
table, using TQB' (3.175)
dOUTl = 0 (3.176)
qce >0
dOUT2 N (acc)(DVcon) (3.177)
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When mixed-mode driver control is used (83.8),
either the throttle or brake pedal may be open loop controlled.

For those cases the interfacing is done as follows:

Case 2. Closed loop control of the throttle and open loop

control of the brake pedal.

TQB = 1linear interpolation from brake table, using (3.178)
dOUTl.
dogpe = (DVeon)l2ee ~ T/ (BEoop)l (3.179)

Case 3. Open loop control of the throttle and closed loop

control of the brake pedal.

It la,, - (dOUTZ)/(DVcon)] > 0:
TQB = (BKcon)[acc n (dOUTZ)/(DVcon)] (3.180)
dOUTl linear interpolation from the brake (3.181)

table, using TQB'

it la,. - (dOUTZ)/(DVcon)] al ¥
dOUTl - 0 (3.182)

§3.5.9. Initialization Procedure

At the commencement of a closed-loop run the steering wheel
angle, drive torque and brake-line pressure must be specified.
These are converted to Driver Module control commands § and IS
in an interface routine (which also must be user-supplied for
use with simulation other than University of Michigan IDSFC)
and stored in the command matrix prior to commencement of the
run. The first Driver Module call will initiate the preview-
predictor procedure, and desired changes in control commands

are entered in the usual manner.
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§3.6. Describing-Function Driver Modelling.

Describing-function driver models have been developed
along the lines given by the Systems Technology Inc. group
(see McRuer et al [3.2] and Donges [3.3]). Two cases are
distinguished, namely, straight line maneuvers, and maneuvers
involving curved paths. The model will first be developed
for straight line maneuvers, with arbitrary trajectories
considered later. Moreover the initial discussion will focus

on steering control, with speed control taken up later.

§3.6.1. Control Strategy for Straight Line Maneuvers.

The vehicle-driver system is modelled as a multi-loop,
feedback control system. As can be seen from the block
diagram in Fig. 3.4, the driver is assumed to control the
heading angle ¥ via an inner loop and the lateral position
Y via an outer loop. Following McRuer et al [3.2], the
overall gain in each loop is assumed to satisfy a cross-over

model form, i.e.,

-ST

D(s) ° %T(s) = w,e °'/s (3.183)

where

(i) D(s) is either D (s) or ﬁY(s) and is a driver's

v
transfer function relating the Laplace transformed
errors in the state variables (driver's input) to
the transformed steering wheel displacement (driver's

output).

(ii) VT(s) is either VT (s) of VTY(S) and is vehicle

7
transfer function relating the transformed steering
wheel displacement (vehicle input) to the transformed

vehicle state variables (vehicle output).
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(iii) B¢ B = B, (3.184)
v@Y ﬁTw = Vo, (3.185)

(iv) s is the Laplace transform parameter.

(v) @, is an experimentally determined driver Cross-
over frequency, i.e., the frequency at which the
gain is one.

(vi) T is an experimentally determined driver time lag
(in steering operations).

To proceed further, the vehicle transfer function must be
calculated which necessitates the introduction of a vehicle
model. The two-degree-of-freedom model shown in Fig., 3.5
will be used here for purposes of developing the control law.
Once the control law has been established, it can be used with
more general vehicle models.

In this model the vehicle is assumed to have a constant

forward speed u. The degrees of freedom are the lateral

velocity v and the angular velocity r about the z-axis. The

equations of motion are taken to be

4
MTOT(V + ur) = ‘E Fyui (3.186)
i=1
Ir = a(Fyul + Fyuz) - b(Fyu3 + Fyu4) (3.187)
p = w0+ft rdt (3.188)
0
t
Y = Y+ [ (v + up)dt (3.189)
0
- j= .190
. _ Cea; , 1i=1,2 (3.190)
yui
-C a. , 1i=3,4 (3.191)
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Fig. 3.5. The two-degree-of-f¥eedom vehicle model (view from
beneath the vehicle). The degrees of freedom are you
rate r and the lateral velocity v.
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(v + ar)/u - GSW/GR , 1i=1,2 (3.192)
oy =
(v - br)/u , 1i=3,4 (3.193)
where MTOT is the total vehicle mass, Fyui are the tire forces

in the lateral direction, IZ is the moment of inertia of the
total vehicle about the z-axis, (a+b) is the wheel base, V¥ is
the heading angle, Cf and Cr are cornering stiffnesses, assumed
to be constant, a, are the slip angles at wheel 1, GR is the
overall steering gear ratio and 5Sw is the steering wheel angle.
Taking the Laplace transform of eqs. (3.186) and (3.187)

gives, on assuming zero initial conditions,

-~

v = 2Cfgsw[ﬁigg 4 %i - 2(a-b)bC_/ (I uMyy )1/ (GRIT  (3.194)
r = chES %i+2(a+b)cr/(uMTOTIz)]/(GR)P (3.195)
o= 52 4 2tes + @2 (3.196)
0 = [4(a+b)?C,C_/(u M) - 2(aCf—bCr)]% VI, (3.197)
o = [(aZc, + b2C)/(ul,) + (Cp + €0/ (ulpyr)] (3.198)

Using eqs. (3.194) and (3.195), the vehicle transfer

i V vV are given b
functions VTw(S) and VTy(s) g y

2C 2(a+b)C
Voo (s) = P(s) - ___£  |sa, “‘"“T‘I (3.199)
Ty E (GR)sT IZ uMTOT -
Sw
N 2(a-b)bC 2(a+b)C
¥..(s) = (8 - 2%t S _ L4 E
a 85w (GR)ST | Mpgp  UMpgply sMporl,

(3.200)
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§3.6.2. Closing the Heading Angle Loop.

In accordance with the McRuer et al [3.2] cross-over model,

one takes

ﬁw(s)GTw(s) = wcwe_ST/s (3.201)
where mcw is the cross-over frequency for the heading angle
loop and

DW(S) = GSw/wc(s) (3.202)

where &c(s) is the heading angle error defined by
Uo(8) = Tyoe(s) - ¥(s) (3.203)

Note that for straight line maneuvers wdes = 0. It is included
here for purposes of generality. Note further that the driver
is assumed to have the same lag T in both loops. Substituting

eq. (3.194) into 3.201 yields

% (GR)Tw 2(a+b)C -1
D (s) = -~ cy |sa r ] e~ST (3.204)
v 2Cy 1, UMporl, J

At this point to recover the STI control law, restriction

is made to a neutral steer vehicle, i.e., one for which

a.Cf = bCr (3.205)

Under these circumstances

1 2(a+b)bCr
I = (s + &%) s + (3.206)
TR uIZ
where
M ua
s AT OTae s (3.207)
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Equation (3.204) can then be rewritten

N (GR)Izwcw 2(a.+b)bCr -

D(s) = —— [s + e S (3.208)
2aCf uIZ
= (Ts + l)K\be'ST (3.209)
where
K, = (GR)a, (a+b)/u (3.210)
ul
T, = —— 2 (3.211)
2a(a+b)Cf

Equation (3.209) has been advanced by the STI group on psycho-
logical grounds where TL’ Kw and T are driver parameters to
be experimentally determined. It is worthy of note that as
a consequence of the model used here, namely, a 2 degree-of-
freedom vehicle model, the parameters TL and K¢ depend on the
forward velocity u. This point would seem worthy of further

investigation.

§3.6.3. Closing the Outer(Path) ILoop.

The first step in the procedure is the replacement of the

inner loop by an equivalent transfer function. From Fig. 3.4

-3

Yy = Dw(S)VT‘P(S)ew (3.212)
Substituting this into eq. (3.203) gives
Vges(s) = (ﬁwVTw + 1)éw

or, using eq. (3.201),

]
~

Vges(S) - )é,

Hence, again using eq. (3.203),
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w e STig
Taes(s) = (— [T () - §(s)]
which gives o oSTug
Vies(S)/U(s) = —ii_gjg? (3.213)
cy

Now Fig. 3.4 gives, on again postulating a cross-over

model,

-ST -T1S

~ ~ w e
DY (<Y Wi = =X (3.214)

From eqs. (3.199) and (3.200)

Yy _ %aw ¥ _ %
VTw v 6Sw v
Hence
[ s _ 2(a-b)bC g 2(a+b)C ]
. M uM I sM I
v$(s) _ LYot TOT" z, TOT" z (3.215)
[gg . 2(a+b)Cr]
I,  WMpopl,
Substituting eq. (3.215) into eq. (3.214) gives
[ s 2(a-bpC, ) 2(a+b)C ]
=y “cy Mror  WMror!l, SMrorlsz %Y 3.216)
Y i 2(a+b)C 5
wcwe +s [_S_?._+ r]
I,  Wpgpl,

At this juncture, the STI group makes the approximation
that in the path loop only low frequencies are significant and

so s maybe taken to be small. Then eq. (3.216) can be approxi-

mated by

ch

S

nie
|

o
R



so that

¥ = <X - g (3.217)

§3.6.4. Calculation of the Steering Wheel Angle.

Referring to Fig. 3.4, it follows that

~ _ ~~q) ~ ~
GSw(s) (eYDY + ew)Dw (3.218)
Using eqs. (3.209) and (3.217), eq. (3.218) gives
5. (s) = (K8, + 8K, (T.s + 1)e " (3.219)
Sw Y'Y v YL
Inverting this laplace transform gives the control law
GSW(t) = KYKweY(t—T) + KYKwTLeY(t_T)
+ Kwew(t—T) + KwTLew(t—T) (3.220)
which may be written
GSw(t) = GYeY(t—T) + G?e?(t—r)
+ G,e,(t-1) + Gre:(t- 3.221
w\p( ) wnp( T) ( )
where
GY = KYKw (3.222)
GY = KYKwTL (3.223)
G = K 3.224
v v ( )
G, = K, T 3.225
v vTL ( )
Note that for the straight-linc case al hand, since the desired

i = = ) s arc jus } watives " Lhe
path is Ydes o, wdes 0 the errors arc just the negatives of Lhe

relevant quantities, i.e.,

ey = -Y (3.226)
eY = -—usiny - vcosy (3.227)
ew = -y (3.228)
e = -r (3.229)
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§3.6.5. Control Strategy for General Maneuvers.

For curved path maneuvers the underlying concepts still
apply, but eq. (3.221) must be modified since when the errors
are zero it yields a zero value for the steering wheel angle
GSW' which in general is not true. For example, GSw is a
constant for a circular path maneuver. To overcome this

difficulty a term proportional to the path curvature is added

to eq. (3.227), in the spirit of McRuer et al [3.2] and

Donges [3.3]. This procedure gives the control law:

sg,(t) = (a+b)[1 + (KD)uz(t—T)][ei(t—T) + r(t-1)1/
[u(t-T)(GR)] + Gyey(t-1) + Gyeg(t-T)
+ Gwew(t—T) + G¢e¢(t—r) (3.230)

It should be noted that the errors are now given by

= - (3.231

°y Dp )

; = -usin(v- - - .232

ey usin(y wdes) vecos(y wdes) (3.232)

= = 3.233

e, Vges ~ V ( )

e: = |Vlk-r (3.234)

v

where Dp, wdes and k are obtained from the desired path. This

desired path is user specified in the form of a road map and

is the same as the one in §3.5.2.

§3.6.6. Speed Control.

To the writers' knowledge there has been no quantitative
treatment of speed control using describing function models.
The following section should therefore be treated on a tentative
basis, pending field trials.

As shown in the block diagram, Fig. 3.6, the driver-vehicle

system is modelled as a single feed back loop. Postulating
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a cross-over form, it follows that

D, (s)¥ (s) = wcue_ST/s (3.235)

where wcu is the cross-over frequency for speed control. The
vehicle model is taken to be:

u = acc (3.236)
or, in the transformed plane,

02

u = a_./s (3.237)

which gives

Vu(S)

u _ 1
R E (3.238)
a

cc
Substituting this into eq. (3.235) gives

D, (s) = mcue‘ST (3.239)

From Fig. 3.6, it follows that

2.0 = Dueu (3.240)

Substituting eq. (3.239) into eq. (3.240) and inverting gives

acc(t) = Gueu(t—T) (3.241)

where

Gu = Wy (3.242)

and e is taken to be given by

>
el BEwayaswis | Vil (3.243)

§3.7. Error Calculation.

For both the preview-predictor driver models and the general
model, the distance errors are defined as the distance between
the desired path and the predicted path, for the preview-
predictor models, and the desired path and the current vehicle

position, for the crossover model. The distance is ideally
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along a line perpendicular to the desired path and in calculated
as follows: The program attempts to find the point on the
desired path closest to the vehicle by a search procedure.
It searches through the list of points designating the desired
path until it finds a point which is farther from the vehicle
than the preceding point checked. When such a point is found,
the search is terminated, and it is assumed that the point found
is closest to the vehicle. The starting point for the search
is the point that was closest to the vehicle the last time
the error was found. Such a scheme would not work, for example,
if the desired were locally s-shaped. However it is felt that
the sampling rate is small enough that such a contingency will
not arise.

Once the closest point on the desired path has been found
the computer projects a straight line through this point and
the next point on the desired path (line 21). A line perpendi-
cular to this line and its extension, and passing through the
vehicle position is calculated (line 22). The point of inter-
section of lines 21 and 12 is then calculated. If this point
lies on the road section in question, the errors now can be
calculated. Otherwise, a line is calculated through the
closest point and the preceeding point on the desired path
(line 23). Line 22 is calculated as before and the intersection
of 2. and &, is found. If this point lies on the road section

2 3
in question, the errors can now be calculated. Otherwise, the

intersection of lines ll and £3 is used to determine the errors.

The distance error is calculated as the distance between
the point of jntersection found above and the vehicle position.

The error is negative 1if the vehicle is to the right of the
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Desired Path
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S ——————— T
2 ééhicle Path

Figure 3.7. Case in which error is not found
perpendicular to desired path.
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«— Desired Path

Figure 3.8.

2 Vehicle Path

Case in which the algorithm
may fail completely.
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desired path as viewed from the vehicle.

This algorithim will fail locally when the vehicle is
directed to go around a sharp corner of the sort shown in
Fig. 3.7. 1If the vehicle was initially on the desired path,
it will overshoot the corner. Until the vehicle is closer
to point 4 than point 2, the error will be the distance from
the vehicle position to point 2 instead of the distance to the
line segment 3-4. As soon as point 4 becomes the closest
point, the algorithm will work. For the case shown in Fig. 3.8,
the algorithm could fail completely but further research is
needed to clarify these issues. If the user experiences diffi-
culties along these lines the road map supplied should be
altered.The corners should be rounded and more points supplied

for the region of difficulty.

§3.8. Mixed-Mode Operation

The capability exists in the Driver Module to operate in
a "mixed-mode'" control state during the course of one sim-
ulation run. Mixed-mode operation refers to a number of
possible combinations of open-loop and closed-loop control,
where closed-loop control must be provided by one of the preview-
predictor models.

Two basic types of options on mixed-mode control are
available to the user, namely:
(i) The driver output variables SSw’ TQB’ TQD and VCOL may
be under open-loop control in the following ways:

(1) 6 only.

Sw
(2) TQB only.
(3) TQD only.

(4) VCqy, only,
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(5) TQB and TQD only.

(6) Dummy output variable only. This variable is currently
unassigned and is included for possible future program
development.

(7) All output variables.

(8) No output variables, i.e., total closed-loop control.

(ii) Different combinations of output variables under open-

loop control may be specified for different time periods

during one simulation run. For example, during one time interval

option (7) may be specified, while in the following period
option (1) may be specified.

This system flexibility allows the user to specify almost
any desired open-loop inputs and then examine the resulting
closed-loop driver responses. A simple but useful example
might be to specify open-loop control of TQB and TQD’ closed-
loop control of GSw’ and to examine the effects of brake

pulses as the driver is attempting to follow a curved path.
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CHAPTER 4. SIMULATION VALIDATION AND OPERATING COSTS

84,1 Simulation Validation.

The validation of the current simulation (IDSFC), at
least as regards open-loop maneuvers, was made by extensive
comparisons with output from the APL hybrid simulation
discussed in Ref. [1l.6] , a simulation which was validated
by comparisons with earlier field tests (done in connection
with the work of McHenrey and DeLeys [1.2]). Further evidence
was provided by Chiang [4.1], who also developed, for the
Ford Motor Company, an all digital simulation for open-loop
maneuvers, of what was essentially the APL mathematical model.
Extensive field tests performed by the Ford Motor Company
showed good agreement with the modelling.

Quite a large number of comparison runs were made with
many variables involved and only a sample is given in the
sequel. The first set involves a straight line braking maneuver.
The vehicle parameters used were supplied by APL and correspond
to a 1971 Ford Mustang. The initial speed was taken to be
50 mph and a ramp brakeline pressure was applied. The rise
time was taken to be 0.1 seconds and three different values
of the peak value wre used. TFor all of the runs the curroent
simulation was run in the fully nonlinear, double prccision
mode, with the APL - CALSPAN tire model.

Figs. 4.1, 4.2 and 4.3 give results for a peak brake-
line pressure of 475 psi. Fig. 4.1 gives the forward velocity
u as a function of time and excellent agreement is seen, with

a maximum difference of approximately 6 in/sec. (Note that

-174-
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the APL simulation shuts off at a higher speed than IDSFC).
Fig. 4.2 shows the lateral velocity v versus time, while
Fig. 4.3 gives the vehicle trajectory, i.e., Y versus X.
Since the maneuver in question is a straight ine, ideally v
and ¥ should be zero, as in given by IDSFC. The APL results
show a small deviation from these ideal values. Figs. 4.4
through 4.6 show similar output for a peak brakeline pressure
of 525 psi. A maximum deviation in u of approximately 30 in/sec
is now seen, as are small departures of the APL results from
the ideal zero values. Results for a peak brakeline pressure
of 550 psi are presented in Figs. 4.7 through 4.9. The maximum
difference in the forward velocity u is now about 20 in/sec.
The APL results again show minor differences in v and Y from
their ideal zero values.

The second set of comparison maneuvers involved steering
without braking. The vehicle is taken to be initially
traveling at 50 mph along a straight line and then a trapezoidal
steering pulse is applied, without braking. The rise time,
dwell time and fall time of the pulse are taken to be 1 sec.
and the peak value is taken to be 60°. Fig. 4.10 shows the
vehicle trajectory Y versus X. Excellent agreement is seen.
Figs. 4.11 and 4.12 present u and v versus time, respectively.
It would seem from Fig. 4.11 that the IDSFC output is physically
more reasonable in that it predicts a slowing down of the
vehicle. The difference in absolute terms though are quite
small. Fig. 4.12 shows that there is very good agreement for

the v versus time results.
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Figs. 4.13 through 4.15 are again for a trapezoidal
steer with the rise time, dwell time and fall time increased
to 2 seconds. The same overall trends are apparent, the

agreement being on the whole very good.

§4.2. Simulation Running Costs. Though computer costs are

variable even within a given installation, depending on mode
and time of operation, etc., some relative comparisons can
be made.

Table 4.1 is concerned with a moderate cornering and
braking maneuver. On it are giveh\QQEts and selected important
output for four modes of running IDSFSi\\Tables 4.2 and 4.3
give similar information for a severe stéé}iqs\maneuver
without braking and a severe braking maneuver with braking.

All of the tables show that removing the nonlwnear terms
in the mathematical model result in a cost saving of dbxpt
20% with only minor losses in accuracy (maximum of aony\ﬁ%).
These results should be emphasized since one of the goalé“\
of the project was to assess the effects of nonlinearities
in the severe regime. The tables also show that 6perating in
a single precision mode cuts costs by 40% with an accuracy
loss of less than 1%. Based on these observations, the autt?ii
recommend that single precision versions of the programs be .
used. Double precision versions were supplied for the event \“\

\

N

that the user has an exceptionally severe maneuver requiring

extra accuracy in the computations.

*The assumption 4 mentioned is one in which the suspension
deflections are regarded as negligible compared to the height

of the center of gravity. In the authors experience with the
simulation, this assumption is a poor one and should not be made.
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Finally, it should be noted that running the simulation
in a closed-loop mode will increase the costs. 1In particular,
runs involving the three-degree-of-freedom predictor in the

Driver Module will be significantly more expensive.
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Moderate Cornering with Braking Maneuver.

Maneuver Description.

is 50 mph.
(ii)

The initial speed of the vehicle

and a peak value of 400 psi.

(iii)

and a peak value of 43 degrees.

Ramp steering is applied with a rise time of 1

second

Ramp braking is applied with a rise time of 0.1 seconds

Quantity Double pre- Double pre- | Single pre- Single preci-
cision. No cision.All cision. No sion.All assump-
assumptions assumptions | assumptions. tions, but no. 4

but no. 4.

cost per $2.20 $1.82 $1.39 $1.12

vehicle

second

cpu time 14.208 11.856 10.606 8.744

sec.

max. X-ac- -0.6042 -.6058 -.6052 -0.60581

celeration

(gees)

max. y-ac- 0.1743 .1788 0.1746 0.1788

celeration

(gees)

max. yaw 6.4319 6.6280 6.4390 6.6268

rate deg. /s,

final X~ 1738.11299 1739.93547 1736.74854 1738.41797

position

in.

final Y- 134.61056 138.37174 134.51895 138.11896

position

in.

Vehicle 144 .843 144.995 144.729 144 .868

stopping

distance ft|.

Vehicle 3.765 3.770 3.765 3.765

stopping

time sec.




Table 4.2
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Severe Steering Maneuver Without Braking.

Maneuver Description.

is 55 mph.

(i) The initial speed of the vehicle

(ii) A sinusoidal steer with amplitude 2 rad. and period 1

secC.

(iii) There is no braking.

is applied.

(iv) The running time is 5 sec.

Quantity Double pre- Double pre- Single pre- Single preci-
cision.No cision.All cision.No sion.All assum
assumptions. | assumptions assumptions. ptions, but

but no. 4. no.4.

éost per

vehicle $2.21 $1.24(low| &) o4 $1.12

second Priority) ‘

oo time 19.242 15.312 13.850 11.494

max. X-ac-

celeration -0.0214 -0.0209 -0.0214 -0.0208

(gees)

max. y-ac-

celeration 0.6648 .6566 0.6647 0.6565

(gees)

max. yaw 19.0602 ~-19.0475 19.0611 -19.0461

rate deg/s.

final X-

position 4280.83737 4269.83863 4282.54297 4271 .56641

in.

final Y-

position 1488.28686 1496.42936 1488.47241 1496 .71997

in.

873.98108 | 871.86272 873.09424 871.01416

final velo
city in/sedq




Table 4.3
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Severe Steering/Braking Maneuver.

Description of the Maneuver.

55 mph.
(i1)

of 480 psi and a rise time of

.1 sec.

(i) The initial vehicle speed is

Ramp braking is applied with a maximum brake line pressure

(iii) A sinusoidal steer is applied with an amplitude of 1% rad.

and a period of 1 sec.

Double pre- nggiﬁ prZIl Single pre- Single precision.
Quantity cision. No . cision. No All assumptions
. assumptions .
assumptlons.but e o assumptions. | but no. 4.

cost per
vehicle $2.38 $1.33(on $1.45 $1.18
second low priority
£ S 14.531 11.881 10.437 8.729
max. =x-
acceleration -0.7351 -0.7416 -0.7351 -0.7416
(gees)
max. v-
acceleration 0.2729 0.2573 0.2729 0.2573
(gees)
AR W Yaw 11.7848 11.7772 11.7779 11.7777
rate deg./s.
max. long.
slip of 1.00000 1.00000 1.00000 1.00000
wheel 1.
max. long.
slip of 0.14498 0.14707 0.14498 0.14707
wheel 2.
max. long.
slip of 1.00000 1.00000 1.00000 1.00000
wheel 3.
max. long.
slip of 0.14252 0.14924 0.14255 0.14924
wheel 4.
final X-

>, . 1788.45117 1807.69776 | 1787.10643 1806.46582
position in.
final Y-
position in. 170.19395 169.62573 169.91209 169.147066
vehicle
stopping 149.038 150.641 148.926 150.539
distance ft.
vehicle
stopping 3.540 3.575 3.535 3.575
time sec.
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CHAPTER 5. ADDITIONAL OPEN-LOOP OUTPUT AND TIRE MODELLING

§5.1. Further Open-Loop Output. To lend further credibility

to the simulation, maneuvers involving braking in a turn were
made and the results are given in Figs. 5.1. through 5.6.
Morever, important end of run quantities are given in Table

5.1. The maneuvers are severe and involve trapezoidal steering
and trapezoidal braking, with peak brakeline pressures of 500,
525 and 550 psi. Inspection of the graphs and the end of run
quantities reveal them to be physically reasonable, further

evidence of the validity of the simulation.

§5.2. Tire Modelling.

Two methods for calculating the tire side force have been
implemented for user flexibility. The first method is identical
with the method used by APL. The second method uses the Calspan
data points* and interpolation between them. For this method,
subroutine READTD reads the Calspan measured tire data points.
Using interpolation, it develops a matrix of evenly spaced
points giving the tire side force as a function of slip angle,
camber angle and radial force. Since there are insufficient
points available from Calspan for non-zero camber angles, the

Calspan empirical equations have been used to generate a modified

*
A magnetic tape was obtained from Calspan which contains tire test
data for the following tires:

Size Maker TIRE No.
ER 78-14 Goodyear 032
E 78-14 Goodyear 063
F 78-14 Goodyear 065

A 78-13 Goodyear 127
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slip angle which was used to set up the matrix for non-zero
camber angles. Subroutine TIRE3 then interpolates between
the data points to give the side force at any desired value
of slip angle, radial force and camber angle.

Table 5.2 gives values of the side force as calculated
via the interpolation method versus the actual values measured
by Calspan. As can be seen, the agreement is quite good. The
minor discrepancies that arise are due to the fact that the
Calspan data is scattered and average values are used in the
interpolation scheme.

Figures 5.7, 5.8 and 5.9 show graphs of the tire side
force as a function of slip angle as calculated by the two
methods. Note that the side force as calculated by the APL
model is less than that calculated via the interpolation
method for small slip angles and greater for slip angles in
the 10° to 20° range.

Figure 5.10 is a "blown up" version of 5.9 in the large
slip angle range. Note that the side force, as calculated by
the interpolation method, reaches a maximum at a slip angle

of about 14° and then decreases with slip angle.



TABLE 5.2

Side Force for TIRF TIRE No. 032, Goodyear ER 78-14
Longitudinal S1lip=0.00 in all cases

Slip Camber Radial Measured Calculated
Angle Angle Force Side Force Side Force
(deg) (deg) (1lbs) (1bs) (1lbs)
- 1.450 0.000 888.670 251.18 2561.05
- 8.000 0.000 888.670 733.75 733.34
-15.740 -0.010 891.110 813.51 814.95
-19.320 0.000 896.000 781.03 786.83
- 3.830 0.000 1489.260 613.36 609.71
-13.370 -0.010 1491.700 1182.27 1182.94

In Ref [5.1] , Pacjeka points out that this fall off governs
the stability in a simple, two-degree of freedom model. A
similar situation may occur in the more complicated models. Hence,
even though the two methods never give values of the side force
that disagree by more than five percent, it may be necessary
to use the interpolation method to determine the stability of
the vehicle.

Experience with the simulation has been that the interpolation
method costs 20 to 25% more than the APL tire model. Also,
the interpolation method costs more to initialize than does the
APL model. A further drawback is that, as implemented, the data

deck model uses a large amount of computer memory.
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100.00
Steering Amplitude = 11,0472 Rad.
Steering Rise Time = (.5000 sec.
Max. Brake Pressure = 500.00 psi
Braking Rise Time = 0.1000 sec.
Steering Start Time = 1.0000 sec.
u Steering Drop Time = 2.0000 sec.
Braking Start Time = 0.0 sec.
Braking Drop Time = 0.0 sec.
Steering End Time = 0.0000 sec.
Braking End Time = 10.000 sec.
00.00
00.00
Fig. 5.1. Forward velocity u (in./sec.)
as a function of time T (sec.) in a
trapezoidal steering/trapezoidal braking
maneuver.
0.00 ' 3
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00.00

Steering Amplitude = 1.0472 Rad.
Steering Rise Time = 0.5000 sec.
Max. Brake Pressure = 500 psi
Braking Rise Time = 0.1000 sec.
JO.00 Steering Start Time = 1.0000 sec.
Steering Drop Time = 2.0000 sec.
Braking Start Time = 0.0000 sec.
Braking Drep Time = 0.0000 sec.
Steering End Time = 0.0000 sec.
Braking End Time = 10.0000 sec.
‘-
600.00
Fig. 5.2 Vehicle trajectory X (in.) versus Y (in.) in a
trapezoidal steering braking trapezoidal maneuver.
200.0Q
0.00

5 . ’ !
10.00 50, 00 30,00
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20.00
Steering Amplitude = 1.0472 Rad.
Steering Rise Time = 0.5000 sec.
u Max. Brake Pressure = 525 psi
Braking Rise Time = 0.1000 sec.
Steering Start Time = 1.0000 sec.
Steering Drop Time = 2.0000 sec.
Braking Start Time = 0.0000 sec.
Braking Drop Time = 0.0000 sec.
Steering End Time =  6.0000 sec.
00.00 Braking End Time = 10.0000 sec.
Fig. 5.3. TForward Velocity u
(in./sec.) as a function of time
100.00 T (sec.) in a trapezoidal steering/
trapezoidal braking maneuver.
0.0(4 3 ] 4
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0.00

0.00

X
Steering Amplitude = 1.0472 Rad.
Steering Rise Time = 0.5000 sec.
Max. Brake Pressure = 525 psi

)0 . 00 | Braking Rise Time = 0.1000 sec.
Steering Start Time = 1.0000 sec.
Steering Drop Time = 2.0000 sec.
Braking Start Time = 0.0000 sec.
Braking Drop Time = 0.0000 sec.
Steering End Time = 6.0000 sec.

L Braking End Time = 10.0000 sec.

20.CO

00.00 Fig. 5.4 Vehicle trajectory X(in.) versus Y(in.) in 2

trapezoidal steering/trapezoidal braking maneuver.
0.00 ‘ N

10.00 20.00 27.
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00.00
Steering Amplitude = 1.0472 Rad.
Steering Rise Time = 0.5000 sec.
Max. Brake Pressure = 550 psi
Braking Rise Time = 0.1000 sec.
Steering Start Time = 1.0000 sec.
Steering Drop Time = 2.0000 sec.
. Braking Start Time = 0.0000 sec.
Braking Drop Time = 0.0000 sec.
Steering End Time = 6.0000 sec.
Braking End Time = 10.0000 sec.
00.00
}00. 00
Fig. 5.5. Forward velocity u (in./sec.)
as a function of time T(secy) in a trapezoigal
steering/trapezoidal braking maneuver.
0.00 ’

A



JO.00}

)JO.00
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Steering Amplitude = 1.0472 Rad.
Steering Rise Time = 0.5000 sec.
Max. Brake Pressure = 550 psi
Braking Rise Time = 0.1000 sec.
Steering Start Time = 1.0000 sec.
Steering Drop Time = 2,0000 sec.
Braking Start Time = 0.0000 sec.
Braking Drop Time = 0.0000 sec.
Steering End Time = 6.0000 sec.
Braking End Time = 10.0000 sec.

)0.00
Fig. 5.6 Vehicle trajectory X(in.) versus Y(in.) in a trapezoidal
steering/trapezoidal braking maneuver.
)0. 00
0.00Q A . .
5.00 10.00 15.00
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peak brakeline

peak brakeline

peak brakeline

tantity pressure=500 psi| pressure=525 psi| pressure=550 psi
1x. x-acceleration - 0.7668 - 0.8319 -~ 0.8463
rees)

tXx. y-acceleration

rees) 0.1231 0.1096 0.0833
X. yaw rate

leg./sec.) 6.9143 6.5810 6.0908
yng. slip of

1eel 1 0.15464 0.16147 1.00000
)ng slip of

1eel 2 0.14929 0.15671 0.16415
ng. slip of

1eel 3 0.16105 1.0000 1.00000
ng. slip of

1eel 4 0.15723 0.19224 0.39912
ehicle

:opping distance

ft.) 117.529 112.770 109.804
shicle

copping time

sec.) 3.025 2.920 2.860

Table 5.1.

trapezoidal braking maneuvers.

End of run quantities in trapezoidal steering/
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References for Chapter 5.

5.1. H.B. Pacejka, "Simplified Analysis of Steady-State
Turning Behaviour of Motor Vehicles. Part 3: More
Elaborate Systems, Vehicle System Dynamics, Vol. 2.,

1973, pp 185-204.



CHAPTER 6. CLOSED-LOOP MANEUVERS

A major new feature of the current simulation is the
capability to perform closed-loop maneuvers, a capability not
present, as yet, in the APL hybrid simulation. A detailed
technical discussion of the maneuvers was given in Chapter 3
and in the USER'S GUIDE. Here sample output will be presented
and discussed. To the authors' knowledge, no field tests in
this area have been performed and so the findings and conclusions
must be regarded as tentative.

The first closed-loop maneuver treated involves a vehicle
traveling at a constant-speed along a straight line (Y=0) and
then subject to a wind gust. The wind gust is simulated by
moving the vehicle instantaneously sideways a distance of 12
inches. The driver's task is to return the vehicle to the
straight line course (Y=0) while maintaining a constant speed.
The initial speed was taken to be 40 mph and, as before, the
vehicle involved is a 1971 Ford Mustang.

Figs. 6.1 through 6.3 present results for the geometric
preview-predictor model. The driver parameters involved are
those given by Kroll [3.1]. Fig. 6.1 gives the vehicle tra-
jectory. In the absence of field data, in all preview-pre-
dictor models the driver's neuromuscular time lag has been set
to zero. An oscillatory, rapidly damped motion is seen and
the system could be interpreted as stable in the sense of a
rapid approach to the desired state. Figs. 6.2 and 6.3 give
the steering wheel angle and the lateral velocity, respectively,
as functions of time. Both show again a rapid return to the

desired zero values. The rather "jerky" motion of the steering

-212-
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wheel stems here, and throughout, from the nature of the
command process.

Figs. 6.4 through 6.6 are results using the three-degree-
of-freedeom predictor. Stability is again evident in the
rapidly damped oscillations. The trajectory, Gsw’ and V all
have less oscillations than in the geometric predictor case.
The system appears to be closer to critical damping [in fact
the trajectory may be overdamped]. The implication of
greater stability is not too surprising in view of the more
sophisticated predictor.

Figs. 6.7 through 6.9 present results for the general
cross-over model. The driver parameters were obtained by
requiring that the overall steering control gain have a slope
of 20dB per decade at the cross-over frequencies [the authors
are indebted to Mr. Calvin Matle of the Ford Motor Co. for
this procedure and for the values obtained using it.]. The
figures show that the maneuver in question is "stable'" in the
sense of the quantities rapidly going to zero. It is inter-
esting that the vehicle trajectory and lateral velocity are
very similar to those given by the geometric predictor model.

On Fig. 6.8 the effects of driver time lag and the limits
set in the steering wheel velocity rate are clearly evident
in the first 9.75 sec. After that time, a smoother driving
process results, smoother than those in the preview-predictor
models.

Results for another wind gust maneuver were also obtained

and are shown in Fig. 6.10 through Fig. 6.13. In this maneuver,

the driver is given the task of not only steering back to the
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Y = 0 desired path, but also must slow the vehicle from 50 to
40 mph. The geometric preview-predictor driver model is the
one employed. The results are very similar to those for the
constant speed case. Note that the forward speed u is highly
overdamped, compared to the oscillatory behavior of the tra-
jectory, lateral velocity and steering wheel angle.

In summary of the wind gust results, it could be noted
that: (i) All models executed the maneuver in an acceptable
fashion. (ii) The amount of damping present should be ex-
perimentally determined and used to distinguish between driver
models. (iii) Work is needed on the neuromuscular filter to
improve steering response time.

The next set of closed loop maneuvers studied involved a
double lane change. Fig. 6.14 shows a schematic of the desired
vehicle trajectory. Figs. 6.1 , 6.16, and 6.17 give the vehicle
trajectory, the steering wheel angle and the lateral velocity
as given by the general cross-over model. (The ideal trapezoidal
trajectory is superimposed on the actual vehicle trajectory

The maneuver on the whole is performed successfully. How-
ever considerable overshoot in the trajectory is seen, suggesting
the need for further study on driver parameters. A response
time lag relative to the desired path is also noted, which
could indicate driver "look ahead" as suggested by Donges [3.3].
The "flat tops'" in the steering wheel time history are due to
the steering wheel rate limits, showing the importance of
acquiring measured data in this area.

Figs. 6.18 through 6.20 present results for Lhe same
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maneuver using the three-degree-of-freedom-preview-predictor
model. Overall, the maneuver is performed better than with the
general cross-over model, much less overshoot occurring. It
would seem however, that better parameters are required to
achieve the precision that actual drivers can attain.
Figs. 6.21 through 6.23 give results for the double lane
change maneuver using the geometric preview predictor model.
The results, though not bad for the transient portion of the
maneuver, are on the whole bad since the driver is unable to
recover. For such maneuvers, more work needs to be done on the
geometric-preview-predictor model if it is to be a viable option.
The main features of the double lane change results may
be summarized as follows: The general cross-over model and the
three-degree-of-freedom model performed acceptably, even
though the maneuver was quite severe, lateral accelerations of
0.40g to 0.65g occurring, depending on the model. It should
be noted that in normal driving lateral accelerations of 0.30g
are rarely exceeded, so some human drivers may have trouble with
the maneuver. It is also recommended that the geometric-preview-
predictor model be used for maneuvers enly in the linear regime.
Figs. 6.24 through 6.27 give results for a cornering man-
euver. The initial vehicle speed is 20 mph. The desired
vehicle path is a straight line for 100 inchesand then a circular
path of radius 1600 inches, while maintaining the 20 mph speed.
The models used are the general cross-over model (Figs. 6.26
and 6.27) and a modified cross-over model (Figs. 6.24 and 6.24)

in which, in the spirit of Donges's [3.3] work, a term propor-
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tional to the curvature of the desired path is added to the
steering wheel angle. Both models lead to an acceptable tra-
jectory, with only minor differences between Figs. 6.24 and 6.26
being noted. It was hoped that addition of the path curvature
term would eliminate the '"spikes' in the steering time history,
but as Figs. 6.25 and 6.27 show, only minor effects arise. More

studies are needed in this area.
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144"

100"

720" 1200" 720"

=

Fig. 6.14. Double lane change maneuver (schematic).
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Appendix I. Some Open-Loop Handling Analyses

Though it is the opinion of the authors that the issue of
"good handling'" has to be addressed in a closed-loop con-
text, some exploratory open-loop studies were done and the
results are presented below.

§1.1. Equations of Motion. To initiate and explore

concepts regarding stability, a simple vehicle model and a
sinusoidal steer maneuver reported are examined. The equa-
tions of motion are, assuming 2 degrees of freedom (see

Pacejka [I.1]),

m(v+ru) = 2F., + 2F (I.1)
Ir = Zany - 2bFry (I.2)
where the tire forces ny and Fry are given by
ny = chosé (1.3)
o, = tan (YALy - o 45 (1.4)
Fry = Fr (I.5)
o, = tan‘l(zﬁ?ﬁ) (1.6)

The tire model used is a curve fitted to the data shown in

Fig. I.1:

F

-F tanhka
f,r max

f,r (I.7)

where Fmax = 1250 1bs, k = = 0.14. The maneuver

Cf/Fmax

studied is the sinusoidal steer
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o+
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GosinZwt , O



§I.2. Severity Parameters. The concept of severity

parameters, i.e., input parameters that push the vehicle
into the 1limit range, has been advanced to judge handling
and a study along these lines was undertaken. The severity
parameters in the maneuver are the amplitude 60, the fre-
quency w, and the forward velocity u (constant).

The system of ncnlinear equations (I.1)and (.2) were
solved numerically by a Runga-Kutta scheme in the SSP/IBM.
No problems were encountered in this connection.

Some typical output re handling parameters is shown in
Figs. 1.2, 1.3 and 1.4. The data was obtained for the spe-
cific vehicle with parameters
52.9"

66.1"

12.7 lb—se02 in,
32000 l1b-sec“in,

a3
b
M
I
Shown in Fig. I.2 is a gain (5/60) as a function of time
for the vehicle moving at 60 mph."Aboutllz%:eIfects are
seen in the handling parameter peak gain as the severity of
the maneuver is increased. Also effected is the time TR to
the first zero crossing, which is a measure of vehicle lag.
From data such as this, the plots shown in Figs. I.3
and I.4 were constructed. Fig. I.3 shows the maximum gain
as a function of vehicle speed for maneuvers of increasing
severity. For low speeds, a relative insensitivity to the
severity parameter 50 is seen. However, at high speeds,

(8-207) effects are observed. Fig. I.4 shows the ''lag time"

TR/T’ where T = %? = 2--a handling parameter--as a function

of vehicle speed for manuevers of increasing severity. For
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-246-

all cases, only 5% effects are seen and relative insensiti-
vity to the severity parameter 60 can be concluded.

Fig. 1.5 is a plot involving the "method-of-moment"
concept. Shown inside the "performance envelope'" are re-
sultant moment vs resultant force trajectories, i.e.,

resultant force and resultant moment as functions of time,

i

for a vehicle traveling at 60 mph, for 60 5° and 60 = 15°.
Clearly the maneuver involving 15° is dangerous since the
trajectory is for a considerable portion of time close to
the 1imit capacity of the tires. However, definitive con-
clusions must await closed-loop studies, since whether

human drivers would allow such conditions is debatable.

§I1.3. Stability and Eigenvalue Analysis. To investi-

gate the stability (asymptotic) of maneuvers, perturbations

have to be given to the system. Let
v>v+E& , r->1+n (1.9)

where £ and n are taken to be very small quantities. Sub-

stituting eqs. (I.9) into egs. (I.10) and 0.11) gives

m(v+E+urt+un) = 2ny + 26ny + 2Fry + 2<SFry

I(r+n) = 2aF + 2adey - 2bFry - 2chFry

Ty
which reduce to

m(E+un) = 268F, + 28F (1.10)

fy

In = 2a6ny - 2b6Fry (I.11)
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Now
Gny = Gchosd (I.12)
and
GFf = 6(—Fmaxtanhkaf)
Differentiating gives
Fmaxk
cSFf = - ————7?———6af (I.13)
cosh™ka
f
where
- £&£tan 2
Gaf = cos ef (I.14)

Substituting eqs. (.13)and .14) into @.12) yields

E+an 2 Fmaxk
GFf = —[_TT_COS chosd]————ﬁ———n (I.15)
cosh kuf
Similarly
sa. = &BN. 2, (1.16)
r u T
and
kaax 2
GFry = - ——45 —cos ar(g—bn) (1.17)

ucosh“ka
T

Substituting eqs. (I.15) and .16) into .10) and @.11) gives

= i g (1.18)
n n/

where
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a a, "
A = l 11 12
221 Ban
and
i 2 2
()
B ukaaX! cos chosé cos™a
11 7 T Tow 2 * 2
| cosh kaf cosh™ka
- r
2 2 }
N _ Zkaax acos efcosé ) bcos o .
12 mu _coshzka coshzka
f r
2KkF .100826 0s6 bc 2 ]
a - max £€ os a,
| - |
21 Tu : coshzkuf cosh?ka |
- T
H 1
2kF é%osze cosé b2cosza
_ max f r
222 T T I 3 * 2 |
. cosh kaf cosh“ka ]
T
Equations (I.1), (I.2), and (I.18) were integrated numeric-
ally with 60 = 10°. For all the maneuvers reported upon

in 8I.2, the perturbations n and £ were found to decay with
time and so those maneuvers are asymptotically stable. It
would seem that the concept of asymptotic stability is of
questionable applicability, since some of the maneuvers in
question come so close to the force generating capacity of
the tires.

An investigation was made on the role, if any, of the
eigenvalues of the matrix A on the nature of the original
and the perturbed maneuvers. These eigenvalues, which are

functions of time, were calculated for the following
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hypothetical situations: (i) understeer car (a=52.9",
b=66.1") (ii) neutral steer car (a=60.5", b=59.5"-~actually
slightly oversteer) (iii) oversteer car (a=66.4'", b=53.6").
All other vehicle parameters were kept at fixed values and
the speed was taken to be 60 mph.

Shown in Fig. 1.6 is the real part of the dominant
eigenvalue (i.e., the eigenvalue whose real part has the
largest magnitude) as a function of time for two values of
the steering severity parameter 60. The results are for the
understeer car. Such a vehicle is stable in steady,
straight-line motion, the tires being treated nonlinearly
(see Pacejka [I.1]). Note that for both cases the eigen-
values are always negative and settle down to a constant
negative value after the steering maneuver is completed.
This implies that the integral from O to infinity of the
real part of the eigenvalue is negative. Since Cesari
(Ref. [I.2], p. 48) used a similar measure to assess the
asymptotic stability of systems such as the one at hand,
one could speculate that a proof of asymptotic stability
could indeed be constructed using such integrals. However,
the role of asymptotic stability, if any, in addressing
issues of controlability is questionable. Towards this end
the influence of the eigenvalues on the perturbation was
investigated. Shown in Figs. I.7 and 1.8 are the associated
velocity and yaw rate perturbation (initial values:
€0=10 in/sec, no=0) as functions of time. Unfortunately,
there appears to be no discernible.relationship or pattern

between the magnitudes of the real part of the eigenvalues



-250-

and the peaks and rates seen in Figs, I.7 and I.8. It can
be concluded however that since the perturbation decay with
time, the motion is asymptotically stable. Figs. I.9, I.10,
and I.11 show similar results for the neutral steer car.
Even though slightly oversteer, stability is seen in the
eigenvalues being always negative and the decay of the per-
turbations with time. Again though, no obvious correlation
between the results in Fig. I1.12 and those in Figs. I.13
and I.14 can be seen.

Results for the oversteer car are shown in Figs. I1.15,
I1.16, and I.17. The vehicle in question is unstable for a
straight line, steady state maneuver (see Pacejka, Ref. [I.1])
and it is interesting that for the first time, eigenvalues
with a positive real part occur. Indeed, once the steering
maneuver is over the real part of the dominant eigenvalue
settles down to a positive constant value and asymptotic
instability could be inferred. However, it is seen that the
perturbations seem to be decaying to zero once the maneuver
is ended. Perhaps divergences would occur for larger times,
but this was not verified since the computational costs
involved for the oversteer car proved to be prohibitive for
such an exploratory work. In any event, one of the goals
of this study, namely the establishing of correlations be-
tween eigenvalues and perturbed maneuvers again cannot be
realized.

One other item that was further explored was the con-
cept set forth in the Plan of Work and Methodology of ex-

ercising the perturbation eqs. (I1.18), which are linear, to
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compute neighboring trajectories, as opposed to exercising
the nonlipear simulation, egs. (I.1) and (1.2). To assess the
accuracy of this procedure a comparison was madoe between

the results so obtained (denoted by a subscript p in the
sequel) and ones obtained from egs. (I.1) and @.2) with initial

conditions set equal to the perturbations (denoted by a

subscript n in the sequel). Shown in Table I.1 is a com-
parison of the velocities for a relatively small initial
velocity perturbation: £o=1 in/sec, for a neutral steer
car. Very good agreement is seen, the differences being so
small as to be indistinguishable graphically. Some dis-
crepancies do occur for an initial velocity perturbation:
€O=10.O, as Fig. I.18& shows, but these are again small
enough to be neglected. Differences in yaw rates were found
in both cases to be even smaller. A more demanding situa-
tion is the oversteer car. Results for it are shown in
Table I.2 and TFig. I.19 for a velocity perturbation:

£O=10. Table I.2 shows that acceptable differences in yaw
rates are still found. However, Fig. I.19 shows that con-
siderable differences occur in the velocities. The conclu-
sion to be drawn is that for such unstable systems (which
may be encountered as the severity parameter is increased),
considerable caution must be exercised in computing neigh-

boring trajectories from the variational equations.
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SIDE FORCE VS. SLIP ANGLE

(057 E70-14 GY BB CWIP CAMMER = 0., SLIP = 0.)

231%0.0
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-500.0 7 T ! V
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Time Vo Vp
sec in/sec in/sec
0.1 4.45 4.56
0.2 12.31 12.46
0.3 21.57 21.70
0.4 30.48 30.53
0.5 37.82 37.77
0.6 42,51 . 42,34
0.7 43,44 43.18
0.8 39.901 39.58
0.9 32.11 31.76
1.0 21.20 20.86
1.1 8.65 8.34
1.2 -4.25 -4.52
1.3 -16.51 ~16.72
1.2 -27.37 -27.51
1.5 ~36.10 ~36.16
1.6 ~—41.82 -41.78
1.7 -43.48 -43.35
1.8 -40.36 -40.17
1.9 -32.74 -32.53
2.0 -21.85 -21.65
2.1 -12.36 -12.19
2.2 —-6.43 -6.31
2.3 -2.93 -2.85
2.4 —0.97 -0.91
2.5 ' 0.08 0.11
2.6 0.58 0.60
2.7 0.77 0.78
2.8 0.79 0.80
2.9 0.73 0.72
3.0 0.64 0.64

Table I.1. Lateral velocities as computed by 'neighboring
trajectory' (Vin't = 1.0 inch/sec) and perturbation
equations (Eo o 1% inch/sec). Neutral steer, with _

H o
6, = 107.
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Time T T
sec B p
rad/sec rad/sec
0.1 .156 .170
0.2 . 359 .378
0.3 .614 .632
0.4 .873 . 887
0.5 1.098 1.108
0.6 1.253 1.263
0.7 1.307 1.312
0.8 1.236 1.254
0.9 1.045 1.067
1.0 . 759 . 780
1.1 .412 .428
132 .040 .047
1.3 -.329 -.330
1.4 -.665 -.675
1.5 -.950 -.963
1.6 -1.151 -1.163
1.7 -1.238 -1.245
1.8 -1.191 -1.192
1.9 -1.016 -1.015
2.0 -.742 -. 740
2.1 -.483 -. 481
2.2 -.313 -. 311
2.3 -.203 —. 201
4 -.133 -.130
.5 -.088 -.085
2.6 -.058 -.055
2.7 -.039 -.036

Table I.2. Yaw rate as computed by "neighboring

trajectory" (v, = 10 inch/sec) and

init
perturbation equations (Eo = 10 inch/sec).

Oversteer car, with 60 = 18°.
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